Math -

1. If $\left.A=\{x, y) \mid x^{2}+y^{2}=25\right\}$ and $\left.B=\{x, y) \mid x^{2}+9 y^{2}=144\right\}$ then $A \cap B$ contains:
(A) One point
(B) Two points
(C) Three points
(D) Fourpoints
2. The number of subsets of a set containing n elements is :
(A) n
(B) $2^{\mathrm{n}}-1$
(C) n^{2}
(D) 2^{n}
3. 20 teachers of a school either teach Maths or Physics. 12 of them teach Maths while 4 teach both the subjects. The number of teachers teaching Physics only is :
(A) 12
(B) 8
(C) 16
(D) None of these
4. If a relation R is defined on the set Z of integers as follows:
. Then
Domain $(\mathrm{R})=$
(A) $\{3,4,5\}$
(B) $\{0,3,4,5\}$
(C) $\{0, \pm 3, \pm 4, \pm 5\}$
(D) None of these
5. If R is a relation on a finite set having n elements, then the number of relations on A is :
(A) 2^{n}
(B)
(C) n^{2}
(D) n^{n}
6. R is a relation on the set Z of integers and it is given by Then R is :
(A) Reflexive and Transitive
(B) Reflexive and Symmetric
(C) Symmetric and Transitive
(D) An equivalence relation
7. The equation
represents a circle of radius :
(A) 5
(B) $2 \sqrt{5}$
(C) $\frac{5}{2}$
(D) None of these
8. If Z_{1}, Z_{2}, Z_{3} are complex numbers such that: $\left|Z_{1}\right|=\left|Z_{2}\right|=\left|Z_{3}\right|=\left|\frac{1}{Z_{1}} \quad \frac{1}{Z_{2}}+\frac{1}{Z_{3}}\right|=1$ then $Z_{1}+Z_{2}+Z_{3} \mid$ is :
(A) Equal to 1
(B) Less than 1
(C) Greater than 1
(D) Equal to 3
9. The locus of point Z satisfying $\operatorname{Re}\left(Z^{2}\right)=0$ is :
(A) A pair of straight lines
(B) A circle
(C) A rectangularhyperbola
(D) None of these
10. If $\mathrm{Z}_{\mathrm{r}}^{\mathrm{Z}}=\stackrel{\square 2 \pi \square}{\cos \square} \quad \square+\mathrm{isin} \square \underline{\square} \square, \mathrm{r}=0,1,2,3,4$ then $\mathrm{Z}_{0} \times \mathrm{Z}_{1} \times \mathrm{Z}_{2} \times \mathrm{Z}_{3} \times \mathrm{Z}$
(A) -1
(B) 0
(C) 1
(D) None of these
11. If α, β, γ are the roots of the equation $x^{3}+4 x+1=0$. Then $(\alpha+\beta)^{-1}+(\beta+\gamma)^{-1}+(\gamma+\alpha)^{-1}=$
(A) 2
(B) 3
(C) 4
(D) 5
12. Let A, G and H be the Arithmetic mean, Geometric mean and Harmonic mean of two positive numbers a and b. The quadratic equation whose roots are A and H is :
(A) $A x^{2}-\left(\mathrm{A}^{2}+\mathrm{G}^{2}\right) \mathrm{x}+\mathrm{AG}^{2}=0$
(B) $\mathrm{Ax}^{2}-\left(\mathrm{A}^{2}+\mathrm{H}^{2}\right) \mathrm{x}+\mathrm{AH}^{2}=0$
(C) $\mathrm{Hx}^{2}-\left(\mathrm{H}^{2}+\mathrm{G}^{2}\right) \mathrm{x}+\mathrm{HG}^{2}=0$
(D) None of these
13. G is a group under \otimes_{7} where $G=\{1,2,3,4,5,6\}$. If $5 \otimes_{7} x=4$ then $x=$
(A) 0.8
(B) 4
(C) 3
(D) 5
14. In the group $G=\{1,3,7,9\}$ under multiplication module $10,\left(3 \times 7^{-1}\right)^{-1}$ is equal to :
(A) 9
(B) 5
(C) 7
(D) 3
15. The identity element in the group | $\square \square \mathrm{x}$ | $\mathrm{x} \square$ |
| ---: | ---: | ---: |
| $\square \mathrm{x}$ | x |
| \square | |$| \mathrm{x} \neq 0$ and x is real \square with respect to matrix multiplication is:

(A)

(B) $\begin{array}{ll}\square \frac{\square}{2} & \frac{1 \square}{\square} \\ \square \frac{1}{\square} & \frac{1}{\square} \\ \square & 2\end{array}$
(C) $\quad \square 1 \quad 0 \square \square$
(D) None of these
16. If $a * b=a^{2}+b^{2}$, then the value of $(4 * 5) * 3$ is :
(A) $\left(4^{2}+5^{2}\right)+3^{2}$
(B) $(4+5)^{2}+3^{2}$
(C) $41^{2}+3^{2}$
(D) $(4+5+3)^{2}$
17. In Z, the set of all integers, the inverse of -7 with respect to defined by all $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$ is :
(A) -14
(B) 7
(C) -7
(D) None of these
18. The units of the field $\mathrm{F}=\{0,2,4,6,8\}$ under are:
(A) $\{0\}$
(B) $\{2,4,6,8\}$
(C) F
(D) None of these
19. $\left(Z_{n}, \oplus_{n}, \otimes_{n}\right)$ is a field if and only if n is :
(A) Even
(B) Odd
(C) Prime
(D) None of these
20. The ideals of a field F are :
(A) Only $\{0\}$
(B) Only F
(C) Both $\{0\}$ and F
(D) None of these
21. Every finite integral domain is:
(A) Not a field
(B) Field
(C) Vector space
(D) None of these
22. The order of i in the multiplicative group of fourth roots of unity is:
(A) 4
(B) 3
(C) 2
(D) 1
23. The non-zero elements a, b of a ring ($\mathrm{R},+$, .) are called zero divisors if :
(A) $\mathrm{a} \cdot \mathrm{b}=0$
(B)
(C)
(D)
24. If the ring R is an integral domain then:
(A) $R[x]$ is field
(B) $\mathrm{R}[\mathrm{x}]$ is an integraldomain
(C) $R[x]$ is not an integral domain
(D) None of these
25. The product of an even permutation and an odd permutation is :
(A) Even
(B) Odd
(C) Neither ever nor odd
(D) None of these
26. If
(A) $\begin{array}{ll}\square 0 & \mathrm{i} \\ \square\end{array}$
(B) $\left.\begin{array}{ll}\square 0 & 0 \square \\ \square & 0\end{array}\right]$
(C) $\begin{array}{ll}\square 1 & 0 \square \\ \square & 1 \square\end{array}$
(D) None of the above
27. If $A B=A$ and $B A=B$ where A and B are square matrices then :
(A) $\mathrm{A}^{2}=\mathrm{A}$ and $\mathrm{B}^{2}=\mathrm{B}$
(B) $\mathrm{A}^{2} \neq \mathrm{A}$ and $\mathrm{B}^{2}=\mathrm{B}$
(C) $\mathrm{A}^{2}=\mathrm{A}$ and $\mathrm{B}^{2} \neq \mathrm{B}$
(D) $\mathrm{A}^{2} \neq \mathrm{A}$ and $\mathrm{B}^{2} \neq \mathrm{B}$
28. If $A=\begin{array}{ccc}\square \\ \square & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}$, then the value of $|\operatorname{adj} A|$ is :
(A) a^{27}
(B) a^{9}
(C) a^{6}
(D) a^{2}
29. If $\left.A=\begin{array}{ccc}\square & \begin{array}{c}1 \\ \square\end{array} & 2 \\ -1 & -1 & 2 \square \\ \square & 2 & -1\end{array}\right]$, then $|\operatorname{adj}(\operatorname{adj} A)|$ is :
(A) 14^{4}
(B) 14^{3}
(C) 14^{2}
(D) 14
30. If $\mathrm{A}=\begin{array}{cc}\square \cos \theta & -\sin \theta \square \\ \square & \sin \theta\end{array} \quad \cos \theta \square$. , and $\mathrm{A}^{\mathrm{T}}+\mathrm{A}=\mathrm{I}_{2}$ where A^{T} is the transpose of A and I is the 2×2 Unit matrix. Then :
(A) $\theta=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$
(B)
(C) $\theta=2 \mathrm{n} \pi+\frac{\pi}{3}, \mathrm{n} \in \mathrm{Z}$
(D) None of these
31. Thematrix $\mathrm{A}=\begin{array}{cc}\square \\ \square-1 & -3-4 \\ \square & 3\end{array} \quad$ is nilpotent of index:
$\square^{\square 1-3-4 \square} \square$
(A) 2
(B) 3
(C) 4
(D) None of these
32. The rank of the matrix $\mathrm{A}=\begin{array}{cccc}\square 2 & 3 & 1 & 4 \square \\ 0 & 1 & 2 & -1 \square \text { is : } \\ 0 & -2 & -4 & 2 \square \square\end{array}$
(A) 2
(B) 3
(C) 1
(D) Indeterminate
33. For what value of λ, the system of equations
$x+y+z=6$
$x+2 y+3 z=10$
$\mathrm{x}+2 \mathrm{y}+\lambda \mathrm{z}=12$ is Inconsistent ?
(A) $\lambda=1$
(B) $\lambda=2$
(C) $\lambda=-2$
(D) $\lambda=3$
34. If A is a 3×3 matrix and B is its adjoint such that $|B|=64$, then $|A|=$
(A) 64
(B) ± 64
(C) $\mathrm{A}+\mathrm{A}^{2}+\mathrm{A}^{3}+$
∞
(D) 18
35. If $\mathrm{A}^{3}=0$, then $1+\mathrm{A}+\mathrm{A}^{2}$ equals :
(A) $1-\mathrm{A}$
(B) $(1-\mathrm{A})^{-1}$
(C) $(1+\mathrm{A})^{-1}$
(D) None of these
36. If $\mathrm{A}=$ equals to:
(A) $\left.\begin{array}{ll}\square 1 & 0 \square \\ 0 & 1 \square\end{array}\right]$
(B) $\begin{array}{ll}\square-1 & -2 \square \\ \square-3 & -4\end{array}$
(C) $\begin{array}{lll}\square & \frac{1}{2} & 1 \square \\ \square- & \frac{1}{3} & \\ \square & 0 & 0 \\ & \square\end{array}$
(D) $\begin{array}{lll}\square-\frac{1}{4} & 1 \square \\ \square & \frac{1}{\square} \\ \square & 0 & \square\end{array}$
37. If $\mathrm{s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$ then the value of $\Delta=\left|\begin{array}{ccc}\mathrm{s}+\mathrm{c} & \mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{s}+\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{a} & \mathrm{s}+\mathrm{b}\end{array}\right|$ is :
(A) $2 \mathrm{~s}^{2}$
(B) $2 \mathrm{~s}^{3}$
(C) s^{3}
(D) $3 \mathrm{~s}^{3}$
8. 38. $\lim _{n \rightarrow \infty} \square \frac{1}{4^{n}}-1 \square$ is equal to :

$$
3^{\mathrm{n}}-1 \square
$$

(A) $\log _{4} 3$
(B) $\log _{3} 4$
(C) 1
(D) None of these
39. The value of $\lim _{\mathrm{n} \rightarrow \infty} \square \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 \mathrm{n}+1)(2 \mathrm{n}+3)} \square$ is :
(A) 1
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) None of these
0. 40.

(A) 0
(B) ∞
(C) 2
(D)
41. The function $\mathrm{f}(\mathrm{x})=\begin{array}{cl}\square 1-2 \mathrm{x}+3 \mathrm{x}^{2}-4 \mathrm{x}^{3}+\square+\infty & \text { if } \mathrm{x} \neq-1 \\ \square & \text { is : } \\ 1 & \text { if } \mathrm{x}=-1\end{array}$
(A) Continuous and differentiable at $\mathrm{x}=-1$
(B) Neither continuous nor differentiable at $\mathrm{x}=-1$
(C) Continuous but not differentiable at $\mathrm{x}=-1$
(D) None of the above

If $f(x)$ is continuous at $x=0$, then the value of K is :
(A) $\frac{\pi}{5}$
(B)
(C) 1
(D) 0
43. If $f(x)$ is differentiable and strictly increasing function, then the value of $\lim _{x \rightarrow 0}^{\square} \square\left(x^{2}\right)-f(x)-f(0) \square$ is :
(A) 1
(B) 0
(C) -1
(D) 2
44. The number of points at which the function $f(x)=|x-3|+|x+1|$ does not have a derivative in the interval $[-4,4]$ is :
(A) 1
(B) 2
(C) 3
(D) None of these
45. If $f(x)$ satisfies the conditions of Rolle's theorem in [1,2] and $f(x)$ is continuous in [1, 2], then $\int_{1}^{2} f^{\prime}(x) d x$ is equal to :
(A) 3
(B) 0
(C) 1
(D) 2
46. Let $f(x)=e^{x}, x \in[0,1]$, then a number ' c ' of the Lagrange's mean value theorem is :
(A) $\log _{\mathrm{e}}(\mathrm{e}-1)$
(B) $\log _{\mathrm{e}}(\mathrm{e}+1)$
(C) 1
(D) None of these
47. The maximum value of $x y$ subject to $x+y=8$ is :
(A) 8
(B) 16
(C) 20
(D) 24
48. The series $n-\frac{n^{2}}{2}+\frac{n^{3}}{3}-\frac{n^{4}}{4}+-+\square-1<n \leq 1$ represents the function:
(A) $\sin n$
(B) $\cos n$
(C) $(1+n)^{n}$
(D) $\log (1+n)$
49. Expansion of sin x in powers of ${ }^{\square} x-\frac{\pi}{\square}$ is :

(D) None of these
50. The equation of tangent to the curve $x=t^{3}-4, y=2 t^{2}+1$ at the point where $t=2$ is :
(A) $2 \mathrm{x}-3 \mathrm{y}-19=0$
(B) $2 x-3 y+19=0$
(C) $2 \mathrm{x}+3 \mathrm{y}-19=0$
(D) $3 x+2 y+6=0$
51. If the normal to the curve $y^{2}=5 x-1$ at the point $(1,-2)$ is of the form $a x-5 y+b=0$. Then ' a ' and 'b' are :
(A) $4,-14$
(B) 4,14
(C) $-4,14$
(D) $-4,-14$
52. 52 . The least value of $f(x)=2 x+\frac{8}{x^{2}}, x>0$ is :
(A) 4
(B) 6
(C) 8
(D) None of these
53. The radius of curvature for the curve $\frac{1}{p^{2}}=\frac{1}{a^{2}} \frac{1}{\mathrm{~b}^{2}}-\frac{\mathrm{r}^{2}}{\mathrm{a}^{2} b^{2}}$ is :
(A) $\frac{\mathrm{p}^{2}}{\mathrm{a}^{2} \mathrm{~b}^{2}}$
(B) $\frac{a^{2} p^{2}}{b^{2}}$
(C) $\frac{a^{2} b^{2}}{p^{3}}$
(D) $a^{2} b^{2} p^{2}$
54. The centre of curvature of the curve $y=x^{2}$ at $(0,0)$ is :

(A) | $\square 0$, |
| :--- |
| \square |
| \square |
| \square |

(B) $\begin{array}{ll}\square 1 & 1 \square \\ \square- \\ \square 2 & 2 \square\end{array}$
(C) $\begin{aligned} & \square 1, \\ & \square 2 \\ & \square\end{aligned}$
(D) None of these
55. The radius of curvature of the curve $r=a \sin n \theta$ at origin is :
(A) na
(B)
(C) 2an
(D) $\frac{2 \mathrm{na}}{3}$
56. The asymptote parallel to co-ordinate axes of the curve $\left(x^{2}+y^{2}\right) x-a y^{2}=0$ is :
(A) $\mathrm{y}-\mathrm{a}=0$
(B) $\mathrm{y}+\mathrm{a}=0$
(C) $\mathrm{x}-\mathrm{a}=0$
(D) $\mathrm{x}+\mathrm{a}=0$
57. The asymptote of the curve $y=e^{x}$ is given by :
(A) $\mathrm{y}=0$
(B) $\mathrm{x}=0$
(C) $y=e$
(D) $x=e$
58. For the curve $y^{2}(1+x) \equiv x^{2}(1-x)$, the origin is a :
(A) Node
(B) Cusp
(C) Conjugate point
(D) None of these
59. The curve $y=x^{3}-3 x^{2}-9 x+9$ has a point of inflexion at :
(A) $x=-1$
(B) $\mathrm{x}=1$
(C) $x=-3$
(D) $x=3$
60. The curve $\mathrm{y}=\log \mathrm{x}$ is :
(A) Concave upwards in $(0, \infty)$
(B) Concave downwards in $(0, \infty)$
(C) Concave upwards in $(-\infty, \infty)$
(D) Concave downwards in $(-\infty, \infty)$
61. The points of inflexion on the curve $x=(\log y)^{3}$ are :
(A) $(0,1)$ and $\left(8, e^{2}\right)$
(B) $(1,0)$ and $\left(8, \mathrm{e}^{2}\right)$
(C) $(0,1)$ and $\left(\mathrm{e}^{2}, 8\right)$
(D) $(1,0)$ and $\left(\mathrm{e}^{2}, 8\right)$
62. The graph of $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ is a :
(A) Circle
(B) Ellipse
(C) Cycloid
(D) None of these
63. The number of leaves in the curver $=\operatorname{asin} 5 \theta$ are :
(A) Two
(B) Five
(C) Ten
(D) None of these
64. If $u=f(y+a x)+\phi(y-a x)$ then $\frac{\partial^{2} u}{\partial x^{2}}=$
(A) $\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}$
(B) $a \frac{\partial^{2} u}{\partial y^{2}}$
(C) $-\mathrm{a}^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}$
(D) $a \frac{\partial^{2} u}{\partial y^{2}}$
65. If $\mathrm{Z}=\log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ then $\mathrm{x} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}+\mathrm{y} \frac{\partial \mathrm{z}}{\partial \mathrm{y}}=$
(A) 0
(B) 1
(C) 2
(D) 3
66. If $y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\square+\infty}}}$ then (2y-1) $\frac{d y}{d x}$ is given by :
(A) $\sin x$
(B) $\cos x$
(C) $\tan x$
(D) $\cot x$
67. The series $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-+\square$ is :
(A) Conditionally Convergent
(B) Absolutely Convergent
(C) Divergent
(D) None of the above
68. The series $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\square$ is :
(A) Conditionally Convergent
(B) Absolutely Convergent
(C) Oscillatory
(D) None of the above
69. The series $\sum_{n=1}^{\infty} \frac{(n-2 \log n)^{n}}{2^{n} n^{n}}$ is :
(A) Convergent
(B) Divergent
(C) Oscillatory
(D) None of these
70. The series $\sum_{n=1}^{\infty} \frac{\ln 2^{n}}{n^{n}}$ is :
(A) Convergent
(B) Divergent
(C) Oscillatory
(D) None of these

$\frac{\sqrt{x}}{\sqrt{3-x}+\sqrt{x}}$

$\overline{2}$

(C) 1
(D) None of these
74.
(A) $\log _{\mathrm{e}} 2$
(B) $\log _{\mathrm{e}} 3$
(C) $\log _{\mathrm{e}} 6$
(D) None of these
75. The entire length of the curve $\mathrm{x}^{2 / 3}+\mathrm{y}^{3 /}=\mathrm{a}^{3^{3 / 2}}$:
(A) 8 a
(B) $4 \sqrt{a}$
(C) 6 a
(D) $\sqrt{8 \mathrm{a}}$
76. The perimeter of $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ is :
(A) a
(B) 2 a
(C) 4 a
(D) 8 a
77. The length of one arch of Cycloid $n=a(\theta+\sin \theta) y=a(1-\cos \theta)$ is :
(A) a
(B) 4 a
(C) 8 a
(D) 32 a
78. The area bounded by the curve $y=2 x$, axis and the ordinates $x=-2, x=3$ is equal to :
(A) 2
(B) 13
(C) 4
(D) 8
79. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is:
(A) $2 \pi \mathrm{ab}$
(B) $\pi \mathrm{ab}$
(C) $\frac{\pi a b}{2}$
(D) None of these
80. The area bounded by the curve $y^{2}=x$ and $x^{2}=y$ is given by :
(A) 0
(B)
(C) $\frac{2}{3}$
(D) 1
81. The whole area of the curve $\mathrm{r}=\mathrm{a} \cos 2 \theta$ is :
(A) $\frac{\pi \mathrm{a}^{2}}{2}$
(B) $\pi \mathrm{a}^{2}$
(C) $2 \pi \mathrm{a}^{2}$
(D) $\frac{2 \pi \mathrm{a}^{2}}{3}$
82. The line $y=x+1$ is revolved about x-axis. The volume of solid of revolution formed by revolving the area covered by the given curve, x-axis and the lines $x=0, x=2$ is :
(A) $\frac{19 \pi}{3}$
(B) $\frac{17 \pi}{3}$
(C) $\frac{13 \pi}{3}$
(D)
83. The volume generated by revolution of the ellipse about major axis is [assume that $\mathrm{a}>\mathrm{b}$]:
(A) $\frac{4 \pi \mathrm{ab}^{2}}{3}$
(B) $\frac{4 \pi a^{2} b}{3}$
(C) $\frac{4 \pi a^{2} b^{2}}{3}$
(D) None of these
84. The surface of the solid of revolution about x-axis of the area bounded by the curve $y=x, x$-axis and the ordinates $x=0$ and $x=3$ is equal to :
(A) $4 \sqrt{2} \pi$
(B) $9 \sqrt{2} \pi$
(C) $11 \sqrt{2} \pi$
(D) $8 \sqrt{2} \pi$
85. The value of $\int_{0}^{\frac{\pi}{2}} \sin ^{6} x d x=$:
(A) $\frac{5 \pi}{8}$
(B)
86.
(A) 0
(B) $\cos \pi^{3}$
(C) $2 \cos ^{3} \pi$
(D) Does not exist
87. Order and degree of the differential equation $\sqrt{2 \frac{\square \mathrm{dy} \square^{3}}{\square \mathrm{dx} \square}+4}=\frac{\square \mathrm{d}^{2} \mathrm{y} \square^{3 / 2}}{\square \mathrm{dx}^{2}} \square$ are respectively :
(A) order 2, degree 3
(B) order 1, degree 3
(C) order 3, degree 2
(D) order 3, degree 1
88. If P, Q are functions of x, then solution of differential equation $\frac{d y}{d x}+P y=Q$ is :
(A) $y e^{\int \mathrm{Pdx}}=\int Q e^{\int \mathrm{Pdx}} \mathrm{dx}+\mathrm{c}$
(B) $y=e^{\int P d x} \int Q e^{\int P d x} d x+C$
(C) $y=\int Q e^{\int P d x} d x+C$
(D) None of these
89. The differential equation of the form $\frac{d y}{d x}+P y=Q y^{n}$ where P and Q are functions of x, is called :
(A) Auxiliaryequation
(B) Bessel'sequation
(C) Clairaut'sequation
(D) Bernoulli's equation
90. The solution of $(y \cos x+1) d x+\sin x d y=0$ is :
(A) $x-y \sin x=c x$
(B) $y+x \sin x=c$
(C) $y-x \sin x=c$
(D) $x+y \sin x=c$
91. If at every point of a certain curve the slope of the tangent equals $\frac{-2 x}{}$, the curve is : y
(A) A straightline
(B) A parabola
(C) A circle
(D) An ellipse
93. The general solution of $\mathrm{P}=\log (\mathrm{px}-\mathrm{y})$ is :
(A) $y=c x-e^{c}$
(B) $y+c x=e^{c}$
(C) $y+x=\log c$
(D) $y+c=e^{x}$
94. The general solution of a differential equation of first order represents :
(A) A family of surfaces
(B) A pair of curves in xy plane
(C) A family of curves in xy plane
(D) None of these
95. The singular solution of the differential equation $P^{3}+P x-y=0$ is $\square_{\square}^{\square}$ where $P=\begin{aligned} & \text { dy } \square \\ & d x\end{aligned}$:
(A) $27 y^{2}+4 x^{3}=0$
(B) $y^{2}=4 a x$
(C) $x^{2}+y^{2}=a^{2}$
(D) None of these
96. The orthogonal trajectory of the family of curves $\mathrm{ay}^{2}=\mathrm{x}^{3}$ is :
(A) $3 \mathrm{y}^{2}-2 \mathrm{x}^{2}=$ constant
(B) $2 x^{2}+y^{2}=$ constant
(C) $3 x^{2}+y^{2}=$ constant
(D) $2 x^{2}+3 y^{2}=$ constant
97. Solution of $\frac{d^{2}}{y_{2}^{d x}}-3 \frac{d y}{d x}+2 y=0$ is :
(A) $\mathrm{ce}^{-2 \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{x}}$
(B) $\mathrm{ce}^{2 \mathrm{x}}+\mathrm{ce}^{\mathrm{x}}$
(C) $\mathrm{c}_{1}^{1} \mathrm{e}^{2 \mathrm{x}}+\mathrm{c}_{2}^{2} \mathrm{e}^{-2 x}$
(D) None of these
98. The general solution of the differential equation $D^{2}(D+1)^{2} y=e^{x}$ is :
(A) $\mathrm{y}=\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\left(\mathrm{c}_{3}+\underset{4}{\mathrm{c} x}\right) \mathrm{e}_{\mathrm{x}}$
(B) $\mathrm{y}=\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\left(\mathrm{c}_{3}+\mathrm{c}_{4} \mathrm{x}\right) \mathrm{e}^{-\mathrm{x}}+\frac{\mathrm{e}^{\mathrm{x}}}{4}$
(C) $y=c_{1}+c_{2} e^{-x}+\left(c_{3}+c_{4} x\right) e^{-x}+\frac{e^{x}}{4}$
(D) None of these
99. The particular integral of the differential equation $(D+2)(D-1)^{3} y=e^{x}$ is :
(A) $\frac{\mathrm{x}^{3} \mathrm{e}^{\mathrm{x}}}{18}$
(B) $x^{3} e^{x}$
(C) $\frac{x^{3} e^{x}}{3}$
(D) None of these
100. The equation of the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{-2}=\frac{z}{3}$ and whose guiding curve is $\mathrm{x}^{2}+2 \mathrm{y}^{2}=1, \mathrm{z}=0$ is given by :
(A) $(3 z-x)^{2}+2(2 z+3 y)^{2}=9$
(B) $(3 x+z)^{2}+2(3 y-2 z)^{2}=9$
(C) $(3 x-z)^{2}+2(3 y+2 z)^{2}=9$
(D) $(2 z+3 x)^{2}+2(3 y-x)^{2}=9$

