<u>Math -</u>

1.	If $A = \{x, y) x^2 + y^2 = 25\}$ and $B = \{x, y) x^2 + (A)$ One point (C) Three points	$9y^2 = 144$ then A \cap B contains : (B) Two points (D) Fourpoints
2.	The number of subsets of a set containing n eleme (A) n (C) n^2	nts is : (B) $2^n - 1$ (D) 2^n
3.	20 teachers of a school either teach Maths or Phy both the subjects. The number of teachers teaching (A) 12 (C) 16	sics. 12 of them teach Maths while 4 teach g Physics only is : (B) 8 (D) None of these
4.	If a relation R is defined on the set Z of integers as fo	llows: . Then
	Domain(R)= (A) $\{3, 4, 5\}$ (C) $\{0, \pm 3, \pm 4, \pm 5\}$	(B) {0, 3, 4, 5}(D) None of these
5.	If R is a relation on a finite set having n elements, t	hen the number of relations on A is :
	(A) 2^{n}	(B)
	(C) n^2	(D) n^n
6.	R is a relation on the set Z of integers and it is give	en by Then R is:
	(A) Reflexive and Transitive(C) Symmetric and Transitive	(B) Reflexive and Symmetric(D) An equivalence relation
7.	The equation	represents a circle of radius :
	(A) 5	(B) 2 $\sqrt{5}$
	(C) $\frac{5}{2}$	(D) None of these
8.	If Z_1, Z_2, Z_3 are complex numbers such that :	
	$ Z_1 = Z_2 = Z_3 = \left \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}\right = 1 \text{ then } Z_1 + Z_3$	$Z_2 + Z_3 $ is:
	(A) Equal to 1 (C) Greater than 1	(B) Less than 1 (D) Equal to 3
9.	The locus of point Z satisfying $\operatorname{Re}(Z^2) = 0$ is :	

- (A) A pair of straight lines(C) A rectangular hyperbola

(B) A circle (D) None of these

10.	If $\mathbf{Z}_{\mathbf{r}} = \begin{array}{c} \boxed{2\pi} \boxed{2\pi} \boxed{2r\pi} \boxed$		
	(A) -1	(B)	0
	(C) 1	(D)	None of these
11.	If α , β , γ are the roots of the equation $x^3 + 4x + 1$	= 0.	Then $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} =$
	(A) 2	(B)	3
	(C) 4	(D)	5
12.	Let A, G and H be the Arithmetic mean, Geometr numbers a and b. The quadratic equation whose re	ic me oots a	ean and Harmonic mean of two positive re A and H is :
	(A) $Ax^2 - (A^2 + G^2) x + AG^2 = 0$	(B)	$Ax^2 - (A^2 + H^2) x + AH^2 = 0$
	(C) $Hx^2 - (H^2 + G^2)x + HG^2 = 0$	(D)	None of these
13.	G is a group under \otimes_7 where G = {1, 2, 3, 4, 5,	6}. I	$f 5 \otimes_7 x = 4$ then $x =$
	(A) 0.8	(B)	4
		(D)	5
14.	In the group $G = \{1, 3, 7, 9\}$ under multiplication is	modu	$110, (3 \times 7^{-1})^{-1}$ is equal to :
	(A) 9 (C) 7	(B) (D)	5
		(D)	5
15.	The identity element in the group $M = \Box x x$] x ≠	0 and x is real \Box with respect to matrix
	multiplication is :		
	$(\mathbf{A}) \begin{array}{c} 1 & 1 \\ 0 \\ 1 & 1 \\ 1 \end{array}$	(B)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$(C) \qquad \begin{array}{c} \Box & 1 & 0 \\ \Box & 0 & 1 \\ \Box & 0 & 1 \end{array}$	(D)	None of these
16.	If $a * b = a^2 + b^2$, then the value of $(4*5)*3$ is : (A) $(4^2 + 5^2) + 3^2$ (C) $41^2 + 3^2$	(B) (D)	$(4+5)^2+3^2$ $(4+5+3)^2$

17.	In Z, the set of all integers, the inverse of -7 with reall a, $b \in Z$ is :	espect to defined by fo	or
	(A) -14	(B) 7	
	(C) -7	(D) None of these	
18.	The units of the field $F = \{0, 2, 4, 6, 8\}$ under	are :	
10,	(Δ) $\{0\}$	$(B) \{2, 4, 6, 8\}$	
	$(\mathbf{C}) \mathbf{F}$	(D) $[2, 4, 0, 0]$ (D) None of these	
		(D) None of these	
19	$(7 \oplus \infty)$ is a field if and only if n is:		
17.	(Δ) Even	(B) Odd	
	(C) Prime	(D) None of these	
		(D) None of these	
20.	The ideals of a field F are :		
-0.	(A) Only $\{0\}$	(B) Only F	
	(C) Both $\{0\}$ and F	(D) None of these	
21.	Every finite integral domain is:		
	(A) Not a field	(B) Field	
	(C) Vector space	(D) None of these	
22.	The order of i in the multiplicative group of fourth r	oots of unity is :	
	(A) 4	(B) 3	
	(C) 2	(D) 1	
•••			
23.	The non-zero elements a, b of a ring $(\mathbf{R}, +, .)$ are c	called zero divisors if :	
	(A) a.b = 0	(B)	
	(C)	(D)	
24.	If the ring R is an integral domain then:		
	(A) $R[x]$ is a field	(B) R[x] is an integral domain	
	(C) R[x] is not an integral domain	(D) None of these	
25.	The product of an even permutation and an odd per	rmutation is :	
	(A) Even	(B) Odd	
	(C) Neither ever nor odd	(D) None of these	

26. <u>If</u> : $(A) \begin{array}{c} \square 0 & i \square \\ \square & \square \\ \square i & 0 \square \end{array}$ $(B) \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $(C) \qquad \begin{array}{c} \Box 1 & 0 \Box \\ \Box & \Box \\ \Box 0 & 1 \end{array}$ None of the above (D) 27. If AB = A and BA = B where A and B are square matrices then : (A) $A^2 = A$ and $B^2 = B$ (B) $A^2 \neq A$ and $B^2 = B$ (C) $A^2 = A$ and $B^2 \neq B$ (D) $A^2 \neq A$ and $B^2 \neq B$ □a 0 0□ 28. If $A = \begin{bmatrix} 0 & a & 0 \end{bmatrix}$, then the value of |adj A| is : 0 0 a (A) a²⁷ (B) a⁹ (C) a⁶ (D) a² 29. If $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 0 & -1 & 1 & 2 \\ 0 & 2 & -1 & 1 \end{bmatrix}$, then |adj (adj A)| is : (A) 14⁴ **(B)** 14³ (C) 14² (D) 14 If $A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \\ \\ \sin\theta & \cos\theta \end{bmatrix}$, and $A^{T} + A = I_{2}$ where A^{T} is the transpose of A and I is the 2×2 Unit matrix. 30. Then:

- (A) $\theta = n \pi, n \in \mathbb{Z}$ (B)
- (C) $\theta = 2n \pi + \frac{\pi}{3}, n \in \mathbb{Z}$ (D) None of these

 $\Box 1 - 3 - 4 \Box$ 31. The matrix $A = \begin{bmatrix} -1 & 3 & 4 \end{bmatrix}$ is nilpotent of index: (A) 2 **(B)** 3 (D) None of these (C) 4 $\Box 2 \quad 3 \quad 1 \quad 4 \Box$ The rank of the matrix A = $\begin{bmatrix} 0 & 1 & 2 & -1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$ is : 32. (A) 2 (B) 3 (C) 1 (D) Indeterminate 33. For what value of λ , the system of equations $\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{6}$ x + 2y + 3z = 10 $x + 2y + \lambda z = 12$ is Inconsistent ? (A) $\lambda = 1$ (B) $\lambda = 2$ (D) $\lambda = 3$ (C) $\lambda = -2$ 34. If A is a 3×3 matrix and B is its adjoint such that |B| = 64, then |A| =(B) ± 64 (A) 64 (C) $A + A^2 + A^3 +$ ∞ (D) 18 35. If $A^3 = 0$, then $1 + A + A^2$ equals : (B) $(1 - A)^{-1}$ (A) 1 - A(C) $(1 + A)^{-1}$ (D) None of these 36. If A = equals to: $(B) \begin{array}{c} \Box -1 & -2 \Box \\ \Box -3 & -4 \Box \end{array}$ $(A) \begin{bmatrix} \Box 1 & 0 \\ \Box \\ 0 & 1 \end{bmatrix}$

$$(C) \begin{array}{c} \square & \overline{2} & \overline{3} \\ \square - & 1 \\ \square & \overline{2} & 0 \\ \square & \overline{2} & 0 \\ \end{array}$$

(D)
$$\begin{bmatrix} -1 & 1 \\ -4 & 3 \\ 1 & 2 \end{bmatrix}$$

37. If s = a + b + c then the value of $\Delta = \begin{vmatrix} s+c & a & b \\ c & s+a & b \\ c & a & s+b \end{vmatrix}$ is : (B) $2s^3$ (A) $2s^2$ (C) s^{3} (D) 3s³ $\lim_{n \to \infty} \frac{1}{4^{n} - 1}$ 38. 38. $\lim_{n \to \infty} \frac{1}{2^{n} - 1}$ is equal to : <u></u>]3ⁿ −1 (A) $\log_4 3$ (B) $\log_3 4$ (C) 1 (D) None of these $\lim_{n \to \infty} \Box_{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n+1)(2n+3)} \Box \text{ is :}$ 39. (B) $\frac{1}{2}$ (A) 1 (C) $-\frac{1}{2}$ (D) None of these 40. 40. $\lim_{x \to \infty} \Box \int_{e^{4x^2}}^{e^{2x}} \frac{xe^{x^2} dx}{e^{4x^2}} = e^{4x^2}$ (A) 0 (B) ∞ (C) 2 (D) 41. The function $f(x) = \begin{bmatrix} -1 - 2x + 3x^2 - 4x^3 + \Box + \infty & \text{if } x \neq -1 \\ 0 & 1 & \text{if } x = -1 \end{bmatrix}$ is : (A) Continuous and differentiable at x = -1(B) Neither continuous nor differentiable at x = -1(C) Continuous but not differentiable at x = -1(D) None of the above

42.	Let $f(x) = \begin{bmatrix} \frac{\sin \pi x}{5x} & , x \neq 0 \\ 0 & 5x \end{bmatrix}$	
	$\Box \mathbf{K} , \mathbf{x} = 0.$	
	If $f(x)$ is continuous at $x = 0$, then the value of $\int_{-\infty}^{\infty}$	K 18 :
	(A) $\frac{\pi}{5}$	(B)
	(C) 1	(D) 0
43.	If $f(x)$ is differentiable and strictly increasing function	on, then the value of $\lim_{x \to 0} \frac{\int_{x} f(x^2) - f(x)}{\int_{x \to 0} f(x) - f(0)} $ is :
	(A) 1	(B) 0
	(C) -1	(D) 2
44.	The number of points at which the function $f(x) = x-3 + x+1 $ does not have a derivative the interval $[-4, 4]$ is :	
	(A) 1	(B) 2
	(C) 3	(D) None of these
45.	If $f(x)$ satisfies the conditions of Rolle's theorem	in $[1, 2]$ and $f(x)$ is continuous in $[1, 2]$, then
	$\int_{1}^{\infty} f'(x) dx \text{ is equal to :}$	
	(A) 3	(B) 0
	(C) 1	(D) 2
46.	Let $f(x) = e^x$, $x \in [0,1]$, then a number 'c' of the Lagrange's mean value theorem is :	
	(A) $\log_{e}(e-1)$	(B) $\log_{e}(e+1)$
	(C) 1	(D) None of these
47	The maximum value of xy subject to $x + y = 8$ is:	
.,.	(A) 8	(B) 16
	(C) 20	(D) 24
48.	The series $n - \frac{n^2}{2} + \frac{n^3}{3} - \frac{n^4}{4} + - + \Box - 1 < n \le 1$ represent	ts the function :
	(A) sinn	$(\mathbf{B})\cos\mathbf{n}$
	(C) $(1 + n)^n$	(D) $\log(1+n)$

49. Expansion of sin x in powers of $\begin{bmatrix} x & -\frac{\pi}{2} \\ x & -\frac{\pi}{2} \end{bmatrix}$ is : (A) $\begin{array}{c} \begin{array}{c} \underline{\pi} \\ \underline{\pi} \\$ (D) None of these 50. The equation of tangent to the curve $x = t^3 - 4$, $y = 2t^2 + 1$ at the point where t = 2 is : (A) 2x - 3y - 19 = 0(B) 2x - 3y + 19 = 0(C) 2x + 3y - 19 = 0(D) 3x + 2y + 6 = 051. If the normal to the curve $y^2 = 5x - 1$ at the point (1, -2) is of the form ax - 5y + b = 0. Then 'a' and 'b' are : (B) 4, 14 (A) 4, -14(C) -4, 14 (D) -4, -14 52. 52. The least value of $f(x) = 2x + \frac{8}{x^2}$, x > 0 is : (A) 4 (B) 6 (C) 8 (D) None of these The radius of curvature for the curve $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{a^2} + \frac{1}{a^2b^2} + \frac{1}{a^2b^2}$ is : 53. (B) $\frac{a^2 p^2}{b^2}$ (A) $\frac{p^2}{a^2 b^2}$ (C) $\frac{a^2b^2}{p^3}$ (D) $a^2 b^2 p^2$

54.	The centre of curvature of the curve $y = x^2$ at (0,0) is :		
	$ (A) \Box_{0}, 1 \Box_{-} \\ \Box_{2} \Box_{-} $	$(B) \Box \begin{array}{c} \Box \begin{array}{c} 1 \\ \Box \end{array} \begin{array}{c} 1 \\ - \end{array} \begin{array}{c} 1 \\ - \end{array} \\ \Box \end{array} \begin{array}{c} 2 \\ - \end{array} \begin{array}{c} 2 \\ - \end{array} \end{array}$	
	(C) $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	(D) None of these	
55.	The radius of curvature of the curve $r = a \sin n \theta a$	at origin is :	
	(A) na	(B)	
	(C) 2an	(D) $\frac{2na}{3}$	
56.	The asymptote parallel to co-ordinate axes of the	$e \operatorname{curve} (x^2 + y^2) x - ay^2 = 0 \text{ is }:$	
	(A) $y - a = 0$	(B) $y + a = 0$	
	(C) x-a=0	(D) $x + a = 0$	
57.	The asymptote of the curve $\mathbf{v} = \mathbf{e}^{\mathbf{x}}$ is given by :		
	(A) $y=0$	(B) $x = 0$	
	(C) $y = e$	(D) $x = e$	
58.	For the curve $y^2(1+x) \equiv x^2(1-x)$, the origin i	sa:	
	(A) Node	(B) Cusp	
	(C) Conjugate point	(D) None of these	
59.	The curve $y = x^3 - 3x^2 - 9x + 9$ has a point of infle	exion at :	
	(A) $x = -1$	(B) $x = 1$ (D) $x = 2$	
	(C) $X = -5$	(D) $X \equiv 3$	
60.	The curve $y = \log x$ is:		
	(A) Concave upwards in $(0, \infty)$	(B) Concave downwards in $(0, \infty)$	
	(C) Concave upwards in $(-\infty, \infty)$	(D) Concave downwards in $(-\infty,\infty)$	
61.	The points of inflexion on the curve $x = (\log y)^3$ are	e:	
	(A) $(0, 1)$ and $(8, e^2)$	(B) $(1, 0)$ and $(8, e^2)$	
	(C) $(0, 1)$ and $(e^2, 8)$	(D) $(1, 0)$ and $(e^2, 8)$	
	1 2		
62.	The graph of $x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ is a :		
	(A) Circle	(B) Ellipse	
	(C) Cycloid	(D) None of these	

63.	The number of leaves in the curve $r = a \sin 5\theta$ are :	
	(A) Two	(B) Five
	(C) Ten	(D) None of these
64.	If $u = f(y+ax) + \phi(y-ax)$ then $\frac{\partial^2 u}{\partial x^2}$	
	$\partial^2 \mathbf{u}$	$_2 \partial^2 \mathbf{u}$
	(A) $\overline{\partial y^2}$	(B) a ∂y^2
	(C) $-a^2 \frac{\partial^2 u}{\partial y^2}$	(D) a $\frac{\partial^2 u}{\partial y^2}$
65.	If Z = log (x ² + y ²) then $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial z} =$	
	$\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y}$	
	(A) 0	(B) 1
	(C) 2	(D) 3
66.	If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \Box + \infty}}}$ then (2y-	$-1) \frac{dy}{dx}$ is given by :
	(A) $\sin x$	(B) $\cos x$
	(C) $\tan x$	(D) cotx
-	1 1 1 1 1	
6/.	The series $1 - + - + - + - + - + - + - + - + - + - $	
	(A) Conditionally Convergent	(B) Absolutely Convergent
	(C) Divergent	(D) None of the above
	-	
68.	The series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \Box$ is :	
	(A) Conditionally Convergent	(B) Absolutely Convergent
	(C) Oscillatory	(D) None of the above
	· · · · ·	
	$\frac{\infty}{n}$ $(n-2\log n)^n$	
<i>69</i> .	The series $\sum \frac{(n-2\log n)}{2^n n^n}$ is :	
	(A) Convergent	(D) Divergent
	(A) Convergent	(D) None of these
	(C) Oscillatory	(D) None of these

70.The series
$$\sum_{n=1}^{\infty} \frac{|n| 2^n}{n}$$
 is :
(A) Convergent
(C) Oscillatory(B) Divergent
(D) None of these71.The series $\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot \dots (3x + 1)}{1 \cdot 2 \cdot \dots x} x^n$ is Convergent if :
 $\sum_{n=1}^{\infty} 1 \cdot 2 \cdot \dots x$ - $\sqrt{x}}{\sqrt{3-x} + \sqrt{x}}$ $\frac{2}{2}$
(D) None of these74.(A) $\log_e 2$
(C) $\log_e 6$ (B) $\log_e 3$
(D) None of these75.The entire length of the curve $x^{2^j} + y^{3^j} = a^{-3^j} x^s$:
(A) $8a$
(C) $6a$ (B) $4\sqrt{a}a$
(D) $\sqrt{8a}$

76.	The perimeter of $r = a (1 + \cos \theta)$ is : (A) a (C) 4a	(B) 2a(D) 8a
77.	The length of one arch of Cycloid $n = a(\theta + \sin\theta)$ (A) a (C) 8a	y = $a(1 - \cos\theta)$ is: (B) 4a (D) 32a
78.	The area bounded by the curve $y = 2x$, $k = axis$ are (A) 2 (C) 4	ad the ordinates $x = -2$, $x = 3$ is equal to : (B) 13 (D) 8
79.	The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is: (A) $2\pi ab$ (C) $\frac{\pi ab}{2}$	(B) πab(D) None of these
80.	The area bounded by the curve $y^2 = x$ and $x^2 = y$ is	given by:
	(A) 0	(B)
	(C) $\frac{2}{3}$	(D) 1
81.	The whole area of the curve $r = a \cos 2\theta$ is :	
	(A) $\frac{\pi a^2}{2}$	(B) πa^2
	(C) $2\pi a^2$	(D) $\frac{2\pi a^2}{3}$
82.	The line $y = x + 1$ is revolved about x-axis. The voluties the area covered by the given curve, x-axis and the	time of solid of revolution formed by revolving e lines $x = 0$, $x = 2$ is :
	(A) $\frac{19\pi}{3}$	(B) $\frac{17\pi}{3}$
	(C) $\frac{13\pi}{3}$	(D)

83. The volume generated by revolution of the ellipse about major axis is [assume that a > b]: (A) $\frac{4\pi ab^2}{3}$ (B) $\frac{4\pi a^2 b}{3}$ (C) $\frac{4\pi a^2 b^2}{3}$ (D) None of these The surface of the solid of revolution about x-axis of the area bounded by the curve y = x, x-axis 84. and the ordinates x = 0 and x = 3 is equal to : (A) $4\sqrt{2}\pi$ (B) $9\sqrt{2}\pi$ (D) $8\sqrt{2}\pi$ (C) $11\sqrt{2}\pi$ 85. The value of $\int_{0}^{\frac{\pi}{2}} \sin^{6} x \, dx = :$ <u>5π</u> **(B)** (A) 8 86. =(B) $\cos \pi^3$ (A) 0 (D) Does not exist (C) $2\cos^{3}\pi$ Order and degree of the differential equation $\sqrt{2 \begin{bmatrix} \frac{1}{2} \frac{dy}{dx} \end{bmatrix}^3 + 4} = \begin{bmatrix} \frac{1}{2} \frac{d^2 y}{dx^2} \end{bmatrix}^{3/2}$ (A) order 2 docume 2 are respectively : 87. (A) order 2, degree 3 (B) order 1, degree 3 (C) order 3, degree 2 (D) order 3, degree 1

88.	If P, Q are functions of x, then solution of differential equation $\frac{dy}{dx} + Py = Q$ is:	
	(A) $ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c$	(B) $y = e^{\int Pdx} \int Q e^{\int Pdx} dx + C$
	(C) $y = \int Q e^{\int P dx} dx + C$	(D) None of these
89.	The differential equation of the form $\frac{dy}{dx} + Py = Q$	y^n where P and Q are functions of x, is called :
	(A) Auxiliary equation(C) Clairaut's equation	(B) Bessel's equation(D) Bernoulli's equation
90.	The solution of $(y \cos x + 1) dx + \sin x dy = 0$ is:	
	(A) $x - y \sin x = cx$ (C) $y - x \sin x = c$	(B) $y + x \sin x = c$ (D) $x + y \sin x = c$
91.	If at every point of a certain curve the slope of the	tangent equals $\frac{-2x}{y}$, the curve is:
	(A) A straight line(C) A circle	(B) A parabola(D) An ellipse
93.	The general solution of $P = \log(px - y)$ is:	
	(A) $y = cx - e^{c}$ (C) $y + x = \log c$	(B) $y + cx = e^{c}$ (D) $y + c = e^{x}$
94.	The general solution of a differential equation of fir	rst order represents :
	(A) A family of surfaces(C) A family of curves in xy plane	(B) A pair of curves in xy plane(D) None of these

The singular solution of the differential equation $P^3 + Px - y = 0$ is \Box where $P = \frac{dy \Box}{dx \Box}$: 95. (A) $27y^2 + 4x^3 = 0$ (B) $y^2 = 4ax$ (C) $x^2 + y^2 = a^2$ (D) None of these The orthogonal trajectory of the family of curves $ay^2 = x^3$ is: 96. (A) $3y^2 - 2x^2 = \text{constant}$ (B) $2x^2 + y^2 = constant$ (C) $3x^2 + y^2 = \text{constant}$ (D) $2x^2 + 3y^2 = constant$ Solution of $\frac{d^2}{dx} - 3\frac{dy}{dx} + 2y = 0$ is : 97. (A) $c e^{-2x} + c e^{x}$ (C) $c e^{12x} + c e^{2-2x}$ (B) c e^{2x} + c e^{x}_{2} (D) None of these The general solution of the differential equation $D^2(D+1)^2 y = e^x$ is : 98. (A) $y = c_1 + c_2 x + (c_3 + c_3 x)e_x$ (B) $y = c_{1} + c_{2}x + (c_{3} + c_{4}x)e^{-x} + \frac{e^{x}}{4}$ (C) $y = c_1 + c_2 e^{-x} + (c_3 + c_4 x) e^{-x} + \frac{e^x}{4}$ (D) None of these The particular integral of the differential equation $(D+2)(D-1)^3y = e^x$ is: **99**. (A) $\frac{x^3 e^x}{18}$ (B) x^3e^x (C) $\frac{x^3 e^x}{3}$ (D) None of these 100. The equation of the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and whose guiding curve is $x^2 + 2y^2 = 1$, z = 0 is given by : (A) $(3z - x)^2 + 2(2z + 3y)^2 = 9$ (B) $(3x + z)^2 + 2(3y - 2z)^2 = 9$ (D) $(2z+3x)^2 + 2(3y-x)^2 = 9$ (C) $(3x-z)^2 + 2(3y+2z)^2 = 9$ pdfinbox.in