SAMPLE QUESTION PAPER

Class X Session 2023-24

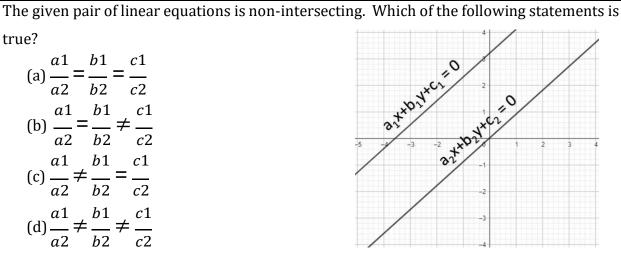
MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SEC	TION A		
	Section A consists of 20	questions of	1 mark each.	
1.	If two positive integers a and b are written as $a = x^3y^2$ and $b = xy^3$, where x, y are prime			
	numbers, then the result obtained by divid	ing the produc	ct of the positive integers by the	
	LCM (a, b) is			
	(a) xy (b) xy^2	(c) x^3y^3	(d) x^2y^2	
2.				1
	The given linear polynomial y = f(x) has (a) 2 zeros (b) 1 zero and the zero is '3' (c) 1 zero and the zero is '4' (d) No zero	-4 -3 -2	5 (0, 4) 4 (0, 4) 2 (3, 0) -1 0 1 2 3 4 5	


true?			
(2)	<i>a</i> 1_	b1 _	_ c1

(a)
$$\frac{a1}{a2} = \frac{b1}{b2} = \frac{c1}{c2}$$

(b)
$$\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$$

(c)
$$\frac{a1}{a2} \neq \frac{b1}{b2} = \frac{c1}{c2}$$

(d)
$$\frac{a1}{a2} \neq \frac{b1}{b2} \neq \frac{c1}{c2}$$

- Write the nature of roots of the quadratic equation $9x^2 6x 2 = 0$. 4.
 - (a) No real roots

(b) 2 equal real roots

(c) 2 distinct real roots

- (d) More than 2 real roots
- 5. Two APs have the same common difference. The first term of one of these is -1 and that of the other is - 8. Then the difference between their 4th terms is
 - (a) 1
- (b) -7
- (c) 7
- (d) 9
- Find the ratio in which the line segment joining (2,-3) and (5, 6) is divided by x-axis. 6.
 - (a) 1:2
- (b) 2:1
- (c) 2:5
- (d) 5:2
- (x,y) is 5 unit from the origin. How many such points lie in the third quadrant? 7.
 - (a) 0

- (b) 1
- (c) 2
- (d) infinitely many

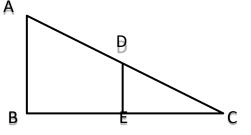
1

1

1

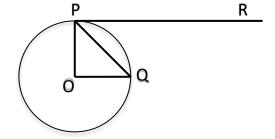
1

8. In \triangle ABC, DE || AB. If AB = a, DE = x, BE = b and EC = c.


Express x in terms of a, b and c.

(b) $\frac{ac}{b+c}$

(c)
$$\frac{ab}{c}$$


(d) $\frac{ab}{b+c}$

9. If O is centre of a circle and Chord PQ makes an angle 50° with the tangent PR at the point of contact

P, find the angle made by the chord at the centre.

- (a) 130°
- (b) 100°
- (c) 50°
- (d) 30°

10.	A Quadrilateral PQRS is drawn to circumscribe a circle.					1		
	If PQ = 12 cm, QR = 15 cm and RS = 14 cm, find the length of SP.							
	(a) 15 cm		(b) 14 cm		(c) 12 cm	(d)) 11 cm	
11.	Given that sin	$\theta = \frac{a}{b}$, find co	os θ.					1
	(a) $\frac{b}{\sqrt{b^2-b^2}}$	$\overline{\overline{a^2}}$	(b) $\frac{b}{a}$		$(c)\frac{\sqrt{b^2-a^2}}{b}$	(d	$\frac{a}{\sqrt{b^2 - a^2}}$	
12.	(sec A + tan A)	(1 – sin A) =						1
	(a) sec A		(b) sin A		(c) cosec A	(0	d) cos A	
13.	A pole 6 m hi	gh casts a sha	adow $2\sqrt{3}$ m	long on the g	round, then t	he Sun's elev	ation is	1
	(a) 60°		(b) 45°		(c) 30°	(d) 90°	
14.	If the perime	ter and the a	rea of a circle	e are numerio	cally equal, th	en the radiu	s of the circle	1
	is							
	(a) 2 unit	S	(b) π units		(c) 4 units	(0	l) 7 units	
15.	It is proposed	l to build a sii	ngle circular _l	park equal in	area to the su	ım of areas o	f two circular	
	parks of diam	neters 16 m a	nd 12 m in a	locality. The	radius of the	new park is		
	(a) 10m	(b) 15m	(c) 20m	(d) 24m	
16.	There is a gre	een square bo	oard of side 'Z	2a' unit circu	mscribing a r	ed circle. Jay	adev is asked	1
	to keep a dot	on the above:	said board. Fi	ind the proba	bility that he	keeps the do	t on the green	
	region.							
	(a) $\frac{\pi}{4}$		(b) $\frac{4-\pi}{4}$	((c) $\frac{\pi-4}{4}$	(d)	$\frac{4}{\pi}$	
17.	2 cards of hear	rts and 4 cards	s of spades are	missing from	a pack of 52 ca	ards. What is t	he probability	1
	of getting a bla	ack card from t	the remaining	pack?				
	(a) $\frac{22}{52}$		(b) $\frac{22}{46}$	ı	(c) $\frac{24}{52}$	(d)	$\frac{24}{46}$	
18.	Find the upper limit of the modal class from the given distribution.					1		
	Height [in cm]	Below 140	Below 145	Below 150	Below 155	Below 160	Below 165	
	Number of girls	4	11	29	40	46	51	

	(a) 165	(b) 160	(c) 15	55 (d) 150)	
19.	DIRECTION: In th	e question number 19 ar	ıd 20, a stater	nent of assertion (A) is fo	ollowed by	1
	a statement of Re	ason (R). Choose the cor	ect option			
	Statement A (Ass	ertion): Total Surface a	rea of the top	is the sum of the		
	curved surface ar	ea of the hemisphere an	d the curved	surface area of the		
	cone.			\		
	Statement R(Rea	son) : Top is obtained b	y fixing the p	plane surfaces of the	\/	
	hemisphere and o	one together.			V	
	(a) Both assert of assertion		re true and re	eason (R) is the correct e	explanation	
	(b) Both asser	tion (A) and reason (R) a	are true and r	eason (R) is not the cor	rect	
	explanatio	n of assertion (A)				
	(c) Assertion (A	A) is true but reason (R) i	s false.			
	(d) Assertion (A) is false but reason (R)	is true.			
20.	Statement A (Aga	ertion): -5, $\frac{-5}{2}$, 0, $\frac{5}{2}$,	ia in Anithma	ntia Dragragaian		1
	Statement A (ASS	$\frac{2}{2}$, 0, $\frac{2}{2}$,	is iii Ai iuiiiie	euc Progression.		
	Statement R (Rea	son) : The terms of an A	rithmetic Pro	gression cannot have bo	th positive	
	and negative ratio	onal numbers.				
	(a) Both assert	ion (A) and reason (R) a	re true and re	eason (R) is the correct e	explanation	
	of assertion	n (A)				
	(b) Both asser	tion (A) and reason (R) a	re true and r	eason (R) is not the cor	rect	
	explanatio	n of assertion (A)				
	(c) Assertion (A	A) is true but reason (R) i	s false.			
	(d) Assertion (A) is false but reason (R)	is true.			
		SE	CTION B			
		Section B consists of 5	questions o	of 2 marks each.		
21.	Prove that $\sqrt{2}$ is a	n irrational number.				2
22.	ABCD is a parall	elogram. Point P divides	s AB in the			2
	ratio 2:3 and poir	t Q divides DC in the rati	o 4:1.	D	c	
	Prove that OC is h	alf of OA.		0		
				P	В	

23.	From an external point P, two tangents, PA	2
	and PB are drawn to a circle with centre 0.	_
	At a point E on the circle, a tangent is drawn	
	to intersect PA and PB at C and D,	
	respectively. If PA = 10 cm, find the	
	perimeter of Δ PCD.	
	B/D	
24.	If tan (A + B) = $\sqrt{3}$ and tan (A - B) = $\frac{1}{\sqrt{3}}$; 0° < A + B < 90°; A > B, find A and B.	2
	[or]	
	Find the value of x	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	4	
25.	With vertices A, B and C of ΔABC as centres, arcs are drawn with radii 14 cm and the three	2
	portions of the triangle so obtained are removed. Find the total area removed from the	
	triangle.	
	[or]	
	Find the area of the unshaded region shown in the given figure.	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	National Art convention got registrations from students from all parts of the country, of	3
	which 60 are interested in music, 84 are interested in dance and 108 students are interested	
	in handicrafts. For optimum cultural exchange, organisers wish to keep them in minimum	
	number of groups such that each group consists of students interested in the same artform	
	and the number of students in each group is the same. Find the number of students in each	
	group. Find the number of groups in each art form. How many rooms are required if each	
	group will be allotted a room?	

27.	If α , β are zeroes of quadratic polynomial $5x^2$	+5x + 1, find the value of	3		
	1. $\alpha^2 + \beta^2$				
	2. $\alpha^{-1} + \beta^{-1}$				
28.	The sum of a two-digit number and the numb	er obtained by reversing the digits is 66. If the	3		
	digits of the number differ by 2, find the num	ber. How many such numbers are there?			
	[0	or]			
	Solve: $-\frac{2}{\sqrt{x}} + \frac{3}{\sqrt{y}} = 2$; $\frac{4}{\sqrt{x}} - \frac{9}{\sqrt{y}} = -\frac{9}{\sqrt{y}} = -\frac{9}$	1			
29.	PA and PB are tangents drawn to a circle of	centre O from an external point P. Chord AB	3		
	makes an angle of 30° with the radius at the μ	point of contact.			
	If length of the chord is 6 cm, find the length	of the tangent PA and the length of the radius			
	OA.				
	$\left(\begin{array}{c} O \left(\begin{array}{c} \end{array} \right) \right) > P$				
	B				
	[or]				
	Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove				
	that \angle PTQ = 2 \angle OPQ.				
30.	If $1 + \sin^2\theta = 3\sin\theta \cos\theta$, then prove that $\tan\theta$	1 1 - 1 or	3		
	ii 1 · siii 0 – ssiiio coso, tiicii prove tiiat tand	2			
31.	The length of 40 leaves of a plant are measur	ed correct to nearest millimetre, and the data	3		
	obtained is represented in the following table	<u>.</u>			
	Length [in mm]	Number of leaves			
	118 - 126	3			
	127 - 135	5			
	136 - 144	9			
	145 - 153	12			
	154 - 162	5			
	163 - 171	4			
	172 - 180	2			
	Find the average length of the leaves.	<u> </u>			

		SEC	TION D		
	Se	ection D consists of 4	questions of 5 marks ea	nch	
32.	A motor boat whose s	speed is 18 km/h in sti	ill water takes 1 hr. more	to go 24 km upstream	5
	than to return downs	tream to the same spo	t. Find the speed of strear	n.	
			[or]		
	Two water taps toget	ther can fill a tank in 9-	3 -hours. The tap of larger o 3	liameter takes 10	
	hours less than the sr	naller one to fill the tai	nk separately. Find the tin	ne in which each tap	
	can separately fill the	e tank.			
33.	(a) State and prove E	Basic Proportionality th	neorem.	A \	5
	(b) In the given figur Prove that $\frac{AB}{BD} = \frac{AE}{FD}$	re ∠CEF = ∠CFE. F is th	ne midpoint of DC.	D F C	
34.	Water is flowing at the	he rate of 15 km/h thi	rough a pipe of diameter	14 cm into a cuboidal	5
	pond which is 50 m long and 44 m wide. In what time will the level of water in pond rise by				
	21 cm?				
	What should be the speed of water if the rise in water level is to be attained in 1 hour?				
	[or]				
	A tent is in the shape	of a cylinder surmour	nted by a conical top. If th	e height and radius of	
	the cylindrical part a	re 3 m and 14 m respe	ctively, and the total heigh	nt of the tent is 13.5 m,	
	find the area of the o	canvas required for m	aking the tent, keeping a	provision of 26 m^2 of	
	canvas for stitching a	nd wastage. Also, find t	the cost of the canvas to be	purchased at the rate	
	of ₹ 500 per m ² .				
35.		_	e values of 'p' and 'q', if the s	um of all frequencies is	5
	90. Also find the mode.			1	
		Marks obtained	Number of students		
		20 - 30	p		
		30 - 40	15		
		40 – 50	25		
		50 - 60	20		
		60 – 70	q		
		70 – 80	8		
		80 - 90	10		

SECTION E 36. Manpreet Kaur is the national record holder for women in the shot-put discipline. Her throw of 18.86m at the Asian Grand Prix in 2017 is the biggest

Keeping her as a role model, Sanjitha is determined to earn gold in Olympics one day.

distance for an Indian female athlete.

Initially her throw reached 7.56m only. Being an athlete in school, she regularly practiced both in the mornings and in the evenings and was able to improve the distance by 9cm every week.

During the special camp for 15 days, she started with 40 throws and every day kept increasing the number of throws by 12 to achieve this remarkable progress.

- (i) How many throws Sanjitha practiced on 11th day of the camp?
- (ii) What would be Sanjitha's throw distance at the end of 6 months?

 (or)

 When will she be able to achieve a throw of 11.16 m?
- (iii) How many throws did she do during the entire camp of 15 days?

37. Tharunya was thrilled to know that the football tournament is fixed with a monthly timeframe from 20th July to 20th August 2023 and for the first time in the FIFA Women's World Cup's history, two nations host in 10 venues. Her father felt that the game can be better understood if the position of players is represented as points on a coordinate plane.

1

2

position of the central midfielder (D) if the position of other players who fo the parallelogram are :- A(1,2), B(4,3) and C(6,6) (ii) Check if the Goal keeper G(-3,5), Sweeper H(3,1) and Wing-back K(0,3) fall same straight line. [or] Check if the Full-back J(5,-3) and centre-back I(-4,6) are equidistant from	
(ii) Check if the Goal keeper G(-3,5), Sweeper H(3,1) and Wing-back K(0,3) fall same straight line. [or]	on a 2
same straight line. [or]	on a 2
[or]	
Check if the Full-back J(5,-3) and centre-back I(-4,6) are equidistant from	
forward C(0,1) and if C is the mid-point of IJ.	
(iii) If Defensive midfielder A(1,4), Attacking midfielder B(2,-3) and Striker E(a,b) l	ie on 1
the same straight line and B is equidistant from A and E, find the position of E	,
38. One evening, Kaushik was in a park. Children were playing cricket. Birds were singing	on a
nearby tree of height 80m. He observed a bird on the tree at an angle of elevation of 4	5°.
When a sixer was hit, a ball flew through the tree frightening the bird to fly away.	In 2
seconds, he observed the bird flying at the same height at an angle of elevation of 30	' and
the ball flying towards him at the same height at an angle of elevation of 60°.	
Ball Bird Height 80 m Ground level	
(i) At what distance from the foot of the tree was he observing the bird sitting o tree?	n the 1
(ii) How far did the bird fly in the mentioned time?	2
(or) After hitting the tree, how far did the ball travel in the sky when Kaushik savball?	v the
(iii) What is the speed of the bird in m/min if it had flown $20(\sqrt{3} + 1)$ m?	1