1.				endioic acid is :
	(1) sp2	(2) sp3	(3) both two	(4) sp
2.	(1) n-pent (2) 2, 2-d (3) 2, 3-d	_		pentane :
3.				CI_2 and CCI_4 are respectively: and 4 (4) 2 and 4
4.		_	solves in lonic (3) CCI ₄	
5.	The conjugate (1) S ⁻²		is: (3) both two	(4) none
	titration as a (1) NH ₄ O (2) NH ₄ O (3) NH ₄ O (4) NaOH Which of the	suitable indices of the suitab	cator : H con are :	ed in which of the following type of
	(1) Malachite	(2) H	ernatite (3) Si	derite (4) Limonite
8.	ml.of 3.0 M N	NaCI and 200	of chloride ions ml. of 4.0 M B (3) 5.0 M	-
9.			s least bond en (3) N ₂ ⁺	
10	Which of the (1) O ₂ ⁻²	e following special (2) ${\rm O_2}^+$	ecies has higher	st bond energy : (4) O ₂
11		yclobutene ne	npound is not	aromatic :

12	2. Which of the following compound is used as refrigerant: (1) CCI ₂ F ₂ (2) CCI ₄ (3) CF ₄ (4) Acetone
13	3. Which of the following is weak acid: (1) C ₆ H ₆ (2) CH ₃ -C≡CH (3) CH ₂ =CH ₂ (4) CH ₃ -C≡C-CH ₃
14	l. L.P.G. mainly consist of the following : (1) Methane (2) Hydrogen (3) Acetylene (4) Butane
15	5. The solubility product of CaCo ₃ is 5 x 10^{-9} . The solubility will be : (1) 2.5×10^{-5} (2) 7×10^{-5} (3) 2.5×10^{-4} (4) 2.2×10^{-9}
16	5. The outer electronic configuration of alkali earth metals is : $(1) \text{ nd}^{10}$ $(2) \text{ ns}^{1}$ $(3) \text{ np}^{6}$ $(4) \text{ ns}_{2}$
17	7. The nature of 2, 4, 6-trinitrophenol is: (1) Neutral (2) Basic (3) Acidic (4) Weak basic
18	8. Which of the following group is sharp ortho and para directive : (1) $-C_6H_5$ (2)-OH (3) $-CH_3$ (4) $-CI$
19	 (1) combustion (2) fractional distillation (3) addition (4) all above
20	O. A sample of petroleum contains 30% n-heptane, 10% 2-methyl hexane and 60% 2, 2, 4-trimethyl pentane, the octane no. of this sample will be: (1) 30% (2) 60% (3) 10% (4) 70%
21	. In which of the following halogens p-electrons does not take part in resonance :
	(1) CH_2 = CH - CH_2Cl (2) BrC_6H_5 (3) C_6H_5Cl (4) CH_2 = $CHCl$
22	2. Which of the following statement is false: (1) 40% solution HCHO is known as formalin (2) HCHO is least reactive in its homologous series (3) The B.P. of isovarelaldehyde is less than n-varelaldehyde (4) The boiling point of ketones are higher than that of aldehydes
	If $n + u = 8$ then the expected no. of orbitals will be:
	(1) 4 (2) 9 (3) 16 (4) 25

			compound C will be: tetra chloride (4) Both 2	and 3
25. Which of the	e following is le	•		
26. The laughin (1) N ₂ O ₄		(3) N ₂ O	(4) N ₂ O ₅	
• 0	en ion concentr this solution w		tion is 3.98 x 10 ⁻⁶ mole pe	er liter. The
(1) 6.0		(3) 5.4	(4) 5.9	
28. The reaction (1) Butane	of sodium ace (2) Ethane		O	
(1) Carbamic	e following acid c acid (2) Ba id (4) su	rbituric acid	ntain – COOH group :	
	e following con (2) XeF ₄	-	one does not exists : (4) XeF ₂	
31. FeSO₄, 7H₂O (1) Mohr's sa		triol (3) Gı	reen vitriol (4) White vitrio	ol
32. The solution formed which		l. HCI when di	iluted with water white pr	recipitate is
, ,	oxychloride oydroxide	* *		
(3) dichle		id		
(2) This (3) It does	does not perform does not gives e	n polymerization limination reac the colour of d	tion ilute KMnO4 solution	
35. Which of the (1) C ₆ H ₅ NH ₂	_	t rongest base : H ₃ NH ₂		

	(3) NH ₃	(4) CH ₃ CONH ₂		
36	. Which of the follow easily:	ing aromatic comp	ound gives sulp	honation reaction very
	(1) Chlorobenzene	(2) Nitrobenzene	(3) Toluene	(4) benzene
37.	. The geometry of I3- (1) Triangular		Tetrahedral	(4) T-shape
38.	560 days will becom (1) 1 gm (2)	ne: 1gm (3) 1gm	•	n. of this element after $\frac{1}{2}$ gm.
39		4 8 tration of hydroger .2 (3) 22.4	-	2 concentration will be
40	. Which of the follow (1) Ethane (2) Pr	ing on combustion opane (3) Methan	_	energy:
41.	Anhy. C6H6 + CH3CI (1) Gattermann (3) Friedel-Craft	(2) Reimer-tieman		of above reaction is :
42.	. The oxidation state (1) + 4 (2) + 3	of Cr in $K_2Cr_2O_7$ is $(3) + 6$		
43.	The natural rubber (1) 1, 3- butadiene			one of these
44.	. Nylone-66 is a : (1) polyester (2) po	lyamide (3)	polyacrylate	(4) none of these
45.	. $2NO(g) + CI_2(g) \rightarrow$	2 NOCI The equili	brium constant	for this reaction is :
	(1) $K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]}$	$(2) K_c = [N_c]$	NOCI] ² 2NO] ² [CI ₂]	
	(3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$	(4) $K_c = [2]$	2 <u>NOCI]</u> 2NO][CI]	
46. C ₆	A H ₆ + CO + HCI (1) anhydrans ZnO (3) anhydrous AICO	(2) $V_2O_5/450^0$ C	here A is :	

4′	7. The values of C) respective (1) CH ₃ COOF	ly. The s	strongest	acid		them is:		x 10 ⁻⁵ (at 25 ⁰
4	8. In which of the (1) CH ₃ Cl (2) CH ₃ Cl (3) CH ₃ Cl (4) CH ₃ Cl	H ₂ CH (C H ₂ CH (C H ₂ CH ₂ Cl	H ₃) CH ₂ C H ₃) CHO H ₂ CH ₂ OH	OH H I	om (asteri	isk) is asy	mmetric	:
4	9. Benzene reac (1) Acetopher			_				
50	0. Which of the (1) H ₂ S	followin (2) HN			agent : (4)	K ₂ Cr ₂ O ₇		
5	1. In which of the mechanism is			l chlo	ride the p	ossibility	of SN ₁ re	eaction
	$(1) (CH_3)_2CH_3$	ICI	(2) (CH ₃)	₃ C-C]	(3)	CH ₃ CI	(4) CH	3CH ₂ CI
52	2. The energy p (1) 28.2 MeV				•		mu is : (4) non	e of these
5.	3. The mole of 1 (1) 5 x 10 ²							e:
	4. Petroleum is (1) Alipha (2) Aroma (3) Alipna (4) None of	ntic alcohotic hydro etic hydro of these $\Delta\Delta$	ol ocarbon ocarbon					
55. C will b	GH ₆ OCH ₃ + HI be:		 .	+ 	The	products	in the ab	ove reaction
	(1) $C_6H_5I+CH_5$ (3) $C_6H_5OH+CH_5$,	,	I ₅ CH ₃ +HC I ₆ +CH ₃ OI	OI		
50	6 F3 is : (1) Bronsted	base	(2) Lewis	base	(3) Lewis	acid (4)	Bronsted	acid
57. V	Which of the foll (1) Benzaldeh	_	ompound (2) Anilin	_	s violet co (3) Nitrob		(4) Phe	
58. H	(1) Na ₅ [Ag(S ₂				wing com [Ag(S ₂ O ₃)	-	pound wit	h AgCI :

(3) $Na_2\{Ag(S_1)\}$	$S_2O_3)_2]$	(4) Na3[Ag(S2)	$O_3)_3]$	
59. Molecular oxyge	en is ·			
(1) ferro magnetic		ic (3) par	a magnetic	(4) non magnetic
60. Bonds in acetyle	ene are :			
(1) 2π bonds	(2) one π bond	$d \qquad (3) \ 3\pi$	bonds (4)	none of these
61. The false statem	•	_		
· · · · · · · · · · · · · · · · · · ·	rtiary alcohol w			
· · · · · · · · · · · · · · · · · · ·	rtiary alcohol w			
	econdary alcohol rimary alcohol w			
62. Which of the fol	lowing alkane	exists is liquid		mal temperature :
(1) $C_{20}H_{42}$	(2) C_3H_8	$(3) C_8 H_{18}$	$(4) \text{ CH}_4$	
(1) Potassium (2) AgNO ₃ so (3) Water (4) All above	n chloride solution Olution		num in :	
64. The weight of a	benzene molec	ule is :		
(1) 78 gm.	(2) 7.8 gm.	$(3) 13 \times 10^{-23}$	(4) 1	none of these
65. CuFeS ₂ is: (1) iorn pyrite	es (2) ma	lachite (3) chal	cosite (4) c	halcopyrites
66. Primary halides (1) SN ₁	follow the follo (2) SN ₂	owing reaction (3) both	mechanism (4) none of	
67. C and Si belong	to the same gre	oup of periodic	c table, CO2	is a gas and SiO ₂ is a :
(1) liquid	(2) gas	(3) solid	(4) none of	these
(2) bond ener (3) the ioniza	le H ₂ O is a lique sociation due to gy of OH high tion potential of onegativity of o	hydrogen bond Foxygen is high	C	
69. "The negative punsaturated asymmethydrogen atoms." T (1) Markown (2) Peroxide of	netric carbon at This statement i ikoff's law	tom which is li		

(3) Bayer's law of distortion

	(4) none of t	nese			
70. Th	e conjugate (1) N ₂ H ₄			(3) NH ₄ ⁺	(4) NH ₂ ⁺
71. (a)	N₂ and (b) C (1) (a) 2,2 (b) (3) (a) 2,1 (b)) 2,2	(2)(a)	1,2 (b) 2,1	ond in the molecules are respectively
72. In atoms		followin	g comp	ound there a	are maximum no. of sp ² hybrid C
				s,5-hexatriene th 1 and 2	
73. Th	(1) octahedr	al	(2) teti	ng hybrid or rahedral angular bipyra	rbitals of 20% character will be:
	e pH of a sol I value will b		5. If the	dilution of t	this solution is increased by 100 tim
ne pr				(3) 9	(4) 8
	carbon is 50	ml. The	hydroca	arbon will b	
hydro	carbon is 50 (1) C ₂ H ₂	ml. The (2) C ₂	hydroca H ₄	arbon will be (3) C ₂ H ₆	e: (4) C ₃ H ₄
hydro 76.	carbon is 50 (1) C_2H_2 The formulation of the contraction of the	ml. The (2) C ₂ la of Celo (2) Sr -Gu + Cl	hydroca H4 estine is CO ₃	arbon will be (3) C ₂ H ₆ 3: (3) SrO required amo	e: (4) C ₃ H ₄
76.	carbon is 50 (1) C_2H_2 The formula (1) $SrSO_4$ CuCl ₂ + \rightarrow (1) 4 faraday Nitrogen de (1) The la (2) $Vacce$ (3) N be	ml. The (2) C ₂ la of Cele (2) Sr Gu + Cl oes not fe bondener	hydroca H4 estine is CO ₃ 2. The r (2) 2 fa orms Ni egy of Ni oitals are V group	arbon will be (3) C ₂ H ₆ 3: (3) SrO required amore araday (3) 1 F ₅ because: ■ N is very high another present	e: (4) C ₃ H ₄ (4) SrCl ₂ ount of electricity for this reaction is faraday (4) 3 faraday
76. 77. 78.	(1) C ₂ H ₂ The formulation (1) SrSO ₄ CuCl ₂ + → (1) 4 faraday Nitrogen do (1) The late (2) Vacco (3) N be (4) Ther The normation (1) lower (2) increase (3) lower	ml. The (2) C ₂ la of Cele (2) Sr -Gu + Cl oes not fe bondener tent d-ort longs to e is inert	hydroca H4 estine is CO ₃ 2. The r (2) 2 fa orms Ni rgy of Ni rgy of Ni rotals are V group effect rature w times 2 times 0 times	arbon will be (3) C ₂ H ₆ 3: (3) SrO required amore araday (3) 1 F ₅ because: =N is very high another present when raised by	e: (4) C ₃ H ₄ (4) SrCl ₂ ount of electricity for this reaction is faraday (4) 3 faraday

81. [Cu(NH ₃) ₄]	$ ^{2+}$ snows the f	following hybr	idization :
$(1) dsp^2$	(2) sp ³ d	(3) dsp3	(4) sp3
capable to j	precipitate all		ons in it. Which of the following ion is n added in this solution : $(4) Cu^{2+}$
83. Fool's gold (1) Cu ₂ S		(3) Al ₂ O ₅	(4) CuFeS ₂
84. In which of (1) OF ₂	the following (2) HgCl ₂		ne central atom is in sp^2 hybrid state : (4) NH_2^+
	er of alkenyl g (2) 5		e from C ₄ H ₇ are : (4) 8
(2) Anti (3) Bleac (4) None	ing agent knocking agen ching agent e of these	t	
87. The alkalin (1) dehydrog	•		wn as:) esterification (4) saponification
(1) 6.71 x 10	of ionization 10 ⁻³ (2) 1 10 ⁻⁵ (4) 1	$.6x10^{-3}$	c acid will be : $(K_a = 1.8 \times 10^{-5})$
-	cess is used for (2) HNO ₃	•	of which of the following: (4) O ₃
the followin (1) NH ₄ 0 (2) NH ₄ 0	n g titrations it OHand HCI OH and CH ₃ CO H and HCI	can be used a	and the pH range is 8-10. In which of as an indicator :
91. Number of (1) pb ²⁺		one molecule (3) Ba ²⁺	
		pecies shows tl	he maximum magnetic moment : (4) Ag ⁺
93. K sp value o	of CaF ₂ is 3.75	x 10 ¹¹ The sol	lubility will be :

(1) 1.45x10 ⁻¹¹ mo (2) 3.45x10 ⁻⁴ mol (3) 2.05x10 ⁻⁴ mol (4) 3.75 x 10 ⁻¹¹ m	/liter ⁻¹ /liter ⁻¹	ı		
94. When Pb ₃ O ₄ is heat (1) pbO ₂ and pb(N (2) pbO and pb(N (3) pbO ₂ (4) pbO	$NO_3)_2$	dilute H N O	3 it give	es:
95. C-H bond length is (1) Acetylene (2) Me			(4) Etl	hane
96. The minimum nos. isomerism will be: (1) Seven (2) for				
97. Which of the follow CaCI ₂ : (1) ethanol (2) ber		_		l not be dried by anhydrous (4) ethyl acetate
98. Which of the follow water: (1) Nitrobenzene			_	precipitate with bromine (4) all above
99. Gypsum is: (1) CaSO ₄ .H ₂ O (3) 2CaSO ₄ . 2H ₂ O				
100.Which of the follow	ing carl	bonium ion is	most s	stable :
(1) CH ₃ -C—CH ₃	(2) CH			
CH ₃ + (3) CH ₃ 0CH-CH ₃	(4) CH			

ANSWER SHEET

1.(2)	2.(3)	3.(3)	4.(2)	5.(2)	6.(4)	7.(1)	8.(3)	9.(1)	10.(4)	11.(1)
12.(1)	13.(2)	14.(4)	15.(2)	16.(4)	17.(3)	18.(2)	19.(2)	20.(2)	21.(1)	22.(2)
23.(3)	24.(4)	25.(4)	26.(3)	27.(3)	28.(3)	29.(2)	30.(3)	31.(3)	32.(1)	33.(2)
34.(3)	35.(2)	36.(3)	37.(2)	38.(1)	39.(4)	40.(4)	41.(3)	42(3)	43.(3)	44.(2)
45.(3)	46.(3)	47.(1)	48.(1)	49.(1)	50.(1)	51.(2)	52.(1)	53.(2)	54.(3)	55.(3)
56.(3)	57.(4)	58.(3)	59.(3)	60.(1)	61.(1)	62.(3)	63.(3)	64.(3)	65.(4)	66.(1)
67.(3)	68.(1)	69.(1)	70.(2)	71.(3)	72.(4)	73.(4)	74.(2)	75.(1)	76.(2)	77.(2)
78.(2)	79.(2)	80.(4)	81.(1)	82.(1)	83.(2)	84.(4)	85.(4)	86.(2)	87.(4)	88.(1)
89.(1)	90.(3)	91.(1)	92.(3)	93.(3)	94.(1)	95.(1)	96.(4)	97.(1)	98.(2)	99.(2)
100.(1)										