

1. The hybridization state of \mathbf{C} atom in butendioic acid is :
(1) sp^{2}
(2) sp^{3}
(3) both two
(4) sp
2. Which of the following is not a isomer of pentane :
(1) n-pentane
(2) 2, 2-dimethy 1 propane
(3) 2, 3-dimethy 1 butane
(4) 2-methy 1 butane
3. The oxidation number of C atom in $\mathrm{Ch}_{2} \mathrm{CI}_{2}$ and CCI_{4} are respectively :
(1) -2 and -4
(2) 0 and - 4
(3) 0 and 4
(4) 2 and 4
4. Which of the following dissolves in lonic solvents :
(1) $\mathrm{C}_{6} \mathrm{H}_{5}$
(2) $\mathrm{CH}_{3} \mathrm{OH}$
(3) CCI_{4}
(4) $\mathrm{C}_{5} \mathrm{H}_{12}$
5. The conjugate acid of HS is :
(1) S^{-2}
(2) $\mathrm{H}_{2} \mathrm{~S}_{2}$
(3) both two
(4) none
6. Phenolphthalein of pH range $[8-10]$ is used in which of the following type of titration as a suitable indicator :
(1) $\mathrm{NH}_{4} \mathrm{OH}$ and HCI
(2) $\mathrm{NH}_{4} \mathrm{OH}$ and HCOOH
(3) $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(4) NaOH and $\mathrm{C}_{2} \mathrm{O}_{4} \mathrm{H}_{2}$
7. Which of the following is iron are :
(1) Malachite
(2) Hernatite
(3) Siderite
(4) Limonite
8. The molar concentration of chloride ions in the resulting solution of $\mathbf{3 0 0}$ $\mathbf{m l}$.of $\mathbf{3 . 0} \mathrm{M} \mathrm{NaCI}$ and $\mathbf{2 0 0} \mathbf{~ m l}$. of $4.0 \mathrm{M} \mathrm{BaCl}_{2}$ will be :
(1) 1.7 M
(2) 1.8 M
(3) 5.0 M
(4) 3.5 M
9. Which of the following has least bond energy :
(1) $\mathrm{N}_{2}{ }^{-2}$
(2) $\mathrm{N}_{2}{ }^{-}$
(3) $\mathrm{N}_{2}{ }^{+}$
(4) N_{2}
10. Which of the following species has highest bond energy :
(1) $\mathrm{O}_{2}{ }^{-2}$
(2) $\mathrm{O}_{2}{ }^{+}$
(3) $\mathrm{O}_{2}{ }^{-}$
(4) O_{2}
11. Which of the following compound is not aromatic :
(1) 1,3-cyclobutene
(2) pyridine
(3) furane
(4) thiophene
12. Which of the following compound is used as refrigerant :
(1) $\mathrm{CCI}_{2} \mathrm{~F}_{2}$
(2) CCI_{4}
(3) CF_{4}
(4) Acetone
13. Which of the following is weak acid :
(1) $\mathrm{C}_{6} \mathrm{H}_{6}$
(2) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(4) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
14. L.P.G. mainly consist of the following :
(1) Methane
(2) Hydrogen
(3) Acetylene
(4) Butane
15. The solubility product of CaCo_{3} is 5×10^{-9}. The solubility will be :
(1) 2.5×10^{-5}
(2) 7×10^{-5}
(3) 2.5×10^{-4}
(4) 2.2×10^{-9}
16. The outer electronic configuration of alkali earth metals is :
(1) nd^{10}
(2) $n s^{1}$
(3) $n p^{6}$
(4) ns_{2}
17. The nature of $2,4,6$-trinitrophenol is :
(1) Neutral
(2) Basic
(3) Acidic
(4) Weak basic
18. Which of the following group is sharp ortho and para directive :
(1) $-\mathrm{C}_{6} \mathrm{H}_{5}$
(2)- OH
(3) $-\mathrm{CH}_{3}$
(4) -CI
19. By which of the following process hydrocarbons are found from petroleum :
(1) combustion
(2) fractional distillation
(3) addition
(4) all above
20. A sample of petroleum contains $\mathbf{3 0 \%}$ n-heptane, $\mathbf{1 0 \%}$ 2-methyl hexane and $\mathbf{6 0 \%}$ 2, 2, 4-trimethyl pentane, the octane no. of this sample will be :
(1) 30%
(2) 60%
(3) 10%
(4) 70%
21. In which of the following halogens p-electrons does not take part in resonance :
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Cl}$
(2) $\mathrm{BrC}_{6} \mathrm{H}_{5}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
(4) $\mathrm{CH}_{2}=\mathrm{CHCl}$
22. Which of the following statement is false :
(1) 40% solution HCHO is known as formalin
(2) HCHO is least reactive in its homologous series
(3) The B.P. of isovarelaldehyde is less than n-varelaldehyde
(4) The boiling point of ketones are higher than that of aldehydes
23. If $\mathbf{n}+\mathfrak{l l}=\mathbf{8}$ then the expected no. of orbitals will be :
(1) 4
(2) 9
(3) 16
(4) 25
24. $\xrightarrow{\text { Alc. } \mathrm{KOH}} \mathbf{B} \xrightarrow{2 \mathrm{Cl}_{2}} \mathrm{C} \xrightarrow{\mathrm{Ca}(\mathrm{OH})_{2}}$ here the compound C will be :
(1) Lewsite
(2) Westron
(3) Acetylene tetra chloride
(4) Both 2 and 3
25. Which of the following is least hydrolysed :
(1) BeCl_{2}
(2) MgCl_{2}
(3) CaCl_{2}
(3) BaCl_{2}
26. The laughing gas is :
(1) $\mathrm{N}_{2} \mathrm{O}_{4}$
(2) NO
(3) $\mathrm{N}_{2} \mathrm{O}$
(4) $\mathrm{N}_{2} \mathrm{O}_{5}$
27. The hydrogen ion concentration of a solution is 3.98×10^{-6} mole per liter. The pH value of this solution will be :
(1) 6.0
(2) 5.8
(3) 5.4
(4) 5.9
28. The reaction of sodium acetate and sodalime gives :
(1) Butane
(2) Ethane
(3) Methane
(4) Propane
29. Which of the following acids does not contain - $\mathbf{C O O H}$ group :
(1) Carbamic acid
(2) Barbituric acid
(3) Lactic acid
(4) succinnic acid
30. Which of the following compound of xenone does not exists :
(1) XeF_{6}
(2) XeF_{4}
(4) XeF_{5}
(4) XeF_{2}
31. $\mathrm{FeSO}_{4}, \mathbf{7 H}_{2} \mathrm{O}$ is :
(1) Mohr's salt
(2) Blue vitriol
(3) Green vitriol
(4) White vitriol
32. The solution of BiCl 3 in dil. HCI when diluted with water white precipitate is formed which is :
(1) Bismith oxychloride
(2) Bismith oxide
(3) Bismith hydroxide
(3) none of these
33. The strongest acid is :
(1) acetic acid
(2) trichloroacetic acid
(3) dichloracetic acid
(4) monochloroacetic acid
34. The false statement regarding alkane is :
(1) This does not perform polymerization reaction
(2) This does not gives elimination reaction
(3) It does not disappear the colour of dilute KMnO_{4} solution
(4) It does not decolourise bromine water
35. Which of the following is strongest base :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(3) NH_{3}
(4) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
36. Which of the following aromatic compound gives sulphonation reaction very easily :
(1) Chlorobenzene
(2) Nitrobenzene
(3) Toluene
(4) benzene
37. The geometry of I3- is :
(1) Triangular
(2) Linear
(3) Tetrahedral
(4) T-shape
38. The half life of a radio active element is 140 days. 1 gm . of this element after 560 days will become :
(1) $\frac{1}{16} \mathrm{gm}$
(2) $\frac{1}{4} \mathrm{gm}$
(3) $\frac{1 \mathrm{gm}}{8}$.
(4) $\frac{1}{2} \mathrm{gm}$.
39. The volume concentration of hydrogen peroxide 6.8% concentration will be :
(1) 5
(2) 11.2
(3) 22.4
(4) 20
40. Which of the following on combustion give maximum energy :
(1) Ethane
(2) Propane
(3) Methane
(4) Butane
41. $\mathrm{C} 6 \mathrm{H} 6+\mathrm{CH} 3 \mathrm{CI} \longrightarrow \mathrm{C} 6 \mathrm{H} 5 \mathrm{CH} 3+\mathrm{HCI}$ The name of above reaction is :
(1) Gattermann
(2) Reimer-tiemann
(3) Friedel-Craft
(4) Cannizaro
42. The oxidation state of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is :
(1) +4
(2) +3
(3) +6
(4) +5
43. The natural rubber is the polymer of :
(1) 1, 3-butadiene
(2) polyamide
(3) isoprene
(4) none of these
44. Nylone-66 is a :
(1) polyester
(2) polyamide
(3) polyacrylate
(4) none of these
45. $2 \mathrm{NO}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow \mathbf{2}$ NOCI The equilibrium constant for this reaction is :
(1) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NOCI}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{CI}_{2}\right]^{2}}$
(2) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NOCI}]^{2}}{[2 \mathrm{NO}]^{2}\left[\mathrm{CI}_{2}\right]}$
(3) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NOCI}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}^{2}\right]}$
(4) $\mathrm{K}_{\mathrm{c}}=\frac{[2 \mathrm{NOCI}]}{[2 \mathrm{NO}][\mathrm{CI}]}$
46. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CO}+\mathrm{HCI} \xrightarrow{\mathrm{A}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCI}$ here A is :
(1) anhydrans ZnO
(3) anhydrous AICO_{3} (2) $\mathrm{V}_{2} \mathrm{O}_{5} / 450^{\circ} \mathrm{C}$
solid KOH
(3) anhydrous AICO_{3} (4) solid KOH
47. The values of for HCN and $\mathrm{CH}_{3} \mathrm{COOH}$ are 7.2×10^{-10} and 1.75×10^{-5} (at 25^{0}
C) respectively. The strongest acid amongst them is :
(1) $\mathrm{CH}_{3} \mathrm{COOH}$ (2) HCN
(3) both
(4) none of these
48. In which of the following carbon atom (asterisk) is asymmetric :
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHOH}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
49. Benzene reacts with $\mathrm{CH}_{3} \mathrm{COCI}$ in presence of Lewis acid AICI_{3} to form :
(1) Acetophenone
(2) Toluene
(3) Benzyl Chloride
(4) Chlorobenzene
50. Which of the following is reducing agent :
(1) $\mathrm{H}_{2} \mathrm{~S}$
(2) HNO_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
51. In which of the following alkyl chloride the possibility of SN_{1} reaction mechanism is maximum :
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCI}$
(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CI}$
(3) $\mathrm{CH}_{3} \mathrm{CI}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CI}$
52. The energy produced realated to mass decay of 0.02 amu is :
(1) 28.2 MeV
(2) 931 MeV
(3) 18.62 MeV
(4) none of these
53. The mole of hydrogen ion in 50 ml . of 0.1 M HCI solution will be :
(1) 5×10^{2}
(2) 5×10^{-3}
(3) 5×10^{3}
(4) 5×10^{-2}
54. Petroleum is mainly consist of :
(1) Aliphatic alcohol
(2) Aromatic hydrocarbon
(3) Alipnetic hydrocarbon
(4) None of these
$\Delta \Delta$
55. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OCH}_{3}+\mathrm{HI} \longrightarrow$
......... \qquad The products in the above reaction will be :
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}+\mathrm{CH}_{3} \mathrm{OH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HOI}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{I}$
(4) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{OI}$

56 F3 is :
(1) Bronsted base
(2) Lewis base (3) Lewis acid (4) Bronsted acid
57. Which of the following compound gives violet colour with FeCI_{3} solution:
(1) Benzaldehyde
(2) Aniline
(3) Nitrobenzene
(4) Phenol
58. Hypo solution forms which of the following complex compound with AgCI :
(1) $\mathrm{Na}_{5}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]$
(2) $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$
(3) $\mathrm{Na}_{2}\left\{\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$
(4) $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]$
59. Molecular oxygen is :
(1) ferro magnetic
(2) diamagnetic
(3) para magnetic
(4) non magnetic
60. Bonds in acetylene are :
(1) 2π bonds
(2) one π bond
(3) 3π bonds
(4) none of these
61. The false statement for Griynaed reagent is :
(1) It gives tertiary alcohol with acetamide
(2) It gives tertiary alcohol with acetone
(3) It gives secondary alcohol with acetaldehyde
(4) It gives primary alcohol with formaldehyde
62. Which of the following alkane exists is liquid state at normal temperature :
(1) $\mathrm{C}_{20} \mathrm{H}_{42}$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}$
(3) $\mathrm{C}_{8} \mathrm{H}_{18}$
(4) CH_{4}
63. The solubility of AgCI at $\mathbf{2 5}^{\boldsymbol{0}} \mathrm{C}$ will be maximum in :
(1) Potassium chloride solution
(2) AgNO_{3} solution
(3) Water
(4) All above
64. The weight of a benzene molecule is :
(1) 78 gm .
(2) 7.8 gm .
(3) 13×10^{-23}
(4) none of these
65. CuFeS_{2} is :
(1) iorn pyrites
(2) malachite (3) chalcosite
(4) chalcopyrites
66. Primary halides follow the following reaction mechanism :
(1) SN_{1}
(2) SN_{2}
(3) both
(4) none of these
67. C and Si belong to the same group of periodic table, CO_{2} is a gas and SiO_{2} is a :
(1) liquid
(2) gas
(3) solid
(4) none of these
68. $\mathrm{H}_{2} \mathrm{~S}$ is a gas while $\mathrm{H}_{2} \mathrm{O}$ is a liquid because :
(1) there is association due to hydrogen bonding
(2) bond energy of OH high
(3) the ionization potential of oxygen is high
(4) the electro negativity of oxygen is high
69. "The negative part of the molecule adding to the double bond goes to that unsaturated asymmetric carbon atom which is linked to the least number of hydrogen atoms." This statement is related to :
(1) Markownikoff's law
(2) Peroxide effect
(3) Bayer's law of distortion
(4) none of these
70. The conjugate base of NH 3 is :
(1) $\mathrm{N}_{2} \mathrm{H}_{4}$
(2) $\mathrm{NH}_{2}{ }^{-}$
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) $\mathrm{NH}_{2}{ }^{+}$
71. (a) \mathbf{N}_{2} and (b) $\mathrm{C}_{2} \mathrm{H}_{2}$. The nos. of $\pi \pi$ and $\sigma \sigma$ bond in the molecules are respectively :
(1) (a) 2,2 (b) 2,2
(2) (a) 1,2 (b) 2,1
(3) (a) 2,1 (b) 2,3
(4) (a) 2,1 (b) 2,1
72. In which of the following compound there are maximum no. of $\mathbf{s p}^{\mathbf{2}}$ hybrid \mathbf{C} atoms:
(1) Benzene
(2) 1,3,5-hexatriene
(2) 1,2,4-hexatriene
(4) both 1 and 2
73. The shape of the molecule having hybrid orbitals of $\mathbf{2 0 \%}$ character will be :
(1) octahedral
(2) tetrahedral
(3) square planer
(4) triangular bipyramidal
74. The $\mathbf{p H}$ of a solution is 5 . If the dilution of this solution is increased by 100 times, the pH value will be :
(1) 5
(2) 7
(3) 9
(4) 8
75. The required amount of oxygen for combustion of $\mathbf{2 0} \mathbf{~ m l}$. of gaseous hydrocarbon is $\mathbf{5 0} \mathbf{~ m l}$. The hydrocarbon will be :
(1) $\mathrm{C}_{2} \mathrm{H}_{2}$
(2) $\mathrm{C}_{2} \mathrm{H}_{4}$
(3) $\mathrm{C}_{2} \mathrm{H}_{6}$
(4) $\mathrm{C}_{3} \mathrm{H}_{4}$
76. The formula of Celestine is :
(1) SrSO_{4}
(2) SrCO_{3}
(3) SrO
(4) SrCl_{2}
77. $\mathbf{C u C l}_{\mathbf{2}}+\rightarrow \mathbf{G u}+\mathbf{C l}_{\mathbf{2}}$. The required amount of electricity for this reaction is :
(1) 4 faraday
(2) 2 faraday
(3) 1 faraday
(4) 3 faraday
78. Nitrogen does not forms NF_{5} because :
(1) The bondenergy of $\mathrm{N} \equiv \mathrm{N}$ is very high
(2) Vaccent d-orbitals are not present
(3) N belongs to V group
(4) There is inert effect
79. The normal temperature when raised by $10^{0} \mathrm{C}$, the rate of reaction will be :
(1) lowered by 2 times
(2) increased by 2 times
(3) lowered by 10 times
(4) increased by 10 times
80. Which of the following gives red precipitate with ammonical cuprous chloride :
(1) Propane
(2) Ethane
(3) Methane
(4) Acetylene
81. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{\mathbf{2 +}}$ snows the following hybridization :
(1) dsp^{2}
(2) $\mathrm{sp}^{3} \mathrm{~d}$
(3) dsp^{3}
(4) sp^{3}
82. A solution contains $\mathrm{CI}-$, I^{-}and $\mathrm{S} \mathrm{O}_{4}{ }^{3-}$ ions in it. Which of the following ion is capable to precipitate all of above when added in this solution :
(1) Pb^{2+}
(2) Ba^{2+}
(3) Hg^{2+}
(4) Cu^{2+}
83. Fool's gold is :
(1) $\mathrm{Cu}_{2} \mathrm{~S}$
(2) FeS_{2}
(3) $\mathrm{Al}_{2} \mathrm{O}_{5}$
(4) CuFeS_{2}
84. In which of the following compound the central atom is in $\mathbf{s p}^{\mathbf{2}}$ hybrid state :
(1) OF_{2}
(2) HgCl_{2}
(3) XeF_{2}
(4) $\mathrm{NH}_{2}{ }^{+}$
85. The number of alkenyl groups possible from $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{-}$are :
(1) 7
(2) 5
(3) 3
(4) 8
86. The tetraethyl lead mixed in petrol is works as :
(1) Cooling agent
(2) Anti knocking agent
(3) Bleaching agent
(4) None of these
87. The alkaline hydrolysis of ester is known as :
(1) dehydrogenation
(2) dehydration (3) esterification
(4) saponification
88. The degree of ionization of $\mathbf{0 . 4} \mathrm{M}$ acetic acid will be : $\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right)$
(1) 6.71×10^{-3}
(2) 1.6×10^{-3}
(3) $0.4 \times 1.8 \times 10^{-5}$
(4) 1.8×10^{-5}
89. Haber process is used for production of which of the following :
(1) NH_{3}
(2) HNO_{3}
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(4) O_{3}
90. The $p_{k a}$ value of phenolphthalein is 9.1 and the pH range is 8 -10. In which of the following titrations it can be used as an indicator :
(1) $\mathrm{NH}_{4} \mathrm{OH}$ and HCI
(2) $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
(3) NaOH and HCI
(4) $\mathrm{NH}_{4} \mathrm{OH}$
91. Number of electrons in a one molecule of CO_{2} :
(1) pb^{2+}
(2) Hg^{2+}
(3) Ba^{2+}
(4) Cu^{2+}
92. Which of the following species shows the maximum magnetic moment :
(1) Mn^{+6}
(2) Ni^{2+}
(3) Fe^{3+}
(4) Ag^{+}
93. $\mathrm{K}_{\text {sp }}$ value of CaF_{2} is 3.75×10^{11} The solubility will be :
(1) $1.45 \times 10^{-11} \mathrm{~mol} /$ litre $^{-1}$
(2) $3.45 \times 10^{-4} \mathrm{~mol} / \mathrm{liter}^{-1}$
(3) $2.05 \times 10^{-4} \mathrm{~mol} / \mathrm{liter}^{-1}$
(4) $3.75 \times 10^{-11} \mathrm{~mol} / \mathrm{liter}^{-1}$
94. When $\mathrm{Pb}_{3} \mathrm{O}_{4}$ is heated with dilute $\mathrm{H} \mathrm{N} \mathrm{O}_{3}$ it gives :
(1) pbO_{2} and $\mathrm{pb}\left(\mathrm{NO}_{3}\right)_{2}$
(2) pbO and $\mathrm{pb}\left(\mathrm{NO}_{3}\right)_{2}$
(3) pbO_{2}
(4) pbO
95. C-H bond length is least in :
(1) Acetylene
(2) Methane
(3) Ethylene
(4) Ethane
96. The minimum nos. of carbon atoms in ketones which will show chain isomerism will be :
(1) Seven
(2) four
(3) six
(4) five
97. Which of the following organic compound could not be dried by anhydrous CaCl_{2} :
(1) ethanol
(2) benzene
(3) chloroform
(4) ethyl acetate
98. Which of the following compound forms white precipitate with bromine water :
(1) Nitrobenzene
(2) Phenol
(3) Benzene
(4) all above
99. Gypsum is :
(1) $\mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(3) $2 \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(4) CaSO_{4}
100. Which of the following carbonium ion is most stable :
(1) $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2}$
CH_{3}
(3) $\mathrm{CH}_{3} 0 \mathrm{CH}-\mathrm{CH}_{3}$
(4) CH_{3}

ANSWER SHEET

$1 .(2)$	$2 .(3)$	$3 .(3)$	$4 .(2)$	$5 .(2)$	$6 .(4)$	$7 .(1)$	$8 .(3)$	$9 .(1)$	$10 .(4)$	$11 .(1)$
$12 .(1)$	$13 .(2)$	$14 .(4)$	$15 .(2)$	$16 .(4)$	$17 .(3)$	$18 .(2)$	$19 .(2)$	$20 .(2)$	$21 .(1)$	$22 .(2)$
23.(3)	$24 .(4)$	$25 .(4)$	$26 .(3)$	$27 .(3)$	$28 .(3)$	$29 .(2)$	$30 .(3)$	$31 .(3)$	$32 .(1)$	$33 .(2)$
$34 .(3)$	$35 .(2)$	$36 .(3)$	$37 .(2)$	$38 .(1)$	$39 .(4)$	$40 .(4)$	$41 .(3)$	$42(3)$	$43 .(3)$	$44 .(2)$
$45 .(3)$	$46 .(3)$	$47 .(1)$	$48 .(1)$	$49 .(1)$	$50 .(1)$	$51 .(2)$	$52 .(1)$	$53 .(2)$	$54 .(3)$	$55 .(3)$
$56 .(3)$	$57 .(4)$	$58 .(3)$	$59 .(3)$	$60 .(1)$	$61 .(1)$	$62 .(3)$	$63 .(3)$	$64 .(3)$	$65 .(4)$	$66 .(1)$
$67 .(3)$	$68 .(1)$	$69 .(1)$	$70 .(2)$	$71 .(3)$	$72 .(4)$	$73 .(4)$	$74 .(2)$	$75 .(1)$	$76 .(2)$	$77 .(2)$
$78 .(2)$	$79 .(2)$	$80 .(4)$	$81 .(1)$	$82 .(1)$	$83 .(2)$	$84 .(4)$	$85 .(4)$	$86 .(2)$	$87 .(4)$	$88 .(1)$
$89 .(1)$	$90 .(3)$	$91 .(1)$	$92 .(3)$	$93 .(3)$	$94 .(1)$	$95 .(1)$	$96 .(4)$	$97 .(1)$	$98 .(2)$	$99 .(2)$
$100 .(1)$										

